

Document Updated against InRule v5.8.1

Document Updated against InRule for Microsoft Dynamics 365 Integration Framework v2.3.21

Document Updated against Microsoft Dynamics 365 v9.2 online, v9.1 on-prem

InRule Integration Framework built against Microsoft .NET Framework v4.7.2

InRule Dynamics Solution built against Microsoft .NET Framework v4.6.2

InRule does not upgrade this document after each Integration Framework release, please see release notes for individual versions if
the version that you are using does not match the versions listed above.

If you are working with earlier versions of any of the above products, the information in this document may not apply to you. Please
check to see if earlier documentation is available to cover your needs.

CONFIDENTIAL Any use, copying or disclosure by or to any other person than has downloaded a trial version of InRule or signed
an NDA is strictly prohibited. If you have received this document by any other means than a download or an email from an InRule
employee, please destroy it retaining no electronic or printed copies.

© Copyright 2024 InRule Technology, Inc.

InRule for Microsoft Dynamics 365

Deployment Guide

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 2 of 142

Table of Contents

Table of Contents .. 2
1 Introducing InRule for Microsoft Dynamics 365 .. 4
2 Understanding your options .. 5

2.1 Microsoft Dynamics 365 (Online) – InRule SaaS .. 5
2.2 Microsoft Dynamics 365 (Online) – Self-hosted in Microsoft Azure .. 6
2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS ... 6
2.4 Other Integration Scenarios ... 7

3 Performing the Installation: In Azure ... 8
3.1 Solution Architecture Overview.. 8
3.2 Gathering prerequisites ... 9
3.3 Deploying and Configuring Components ... 12

4 Performing the Installation: On-Premises ... 29
4.1 An overview of the Components needed ... 29
4.2 Gathering prerequisites ... 30
4.3 Deploying and Configuring Components ... 33

Appendix A: Additional Resources ... 46
InRule’s Support Website .. 46
InRule’s Support Team ... 46
InRule’s ROAD Team .. 46

Appendix B: Anatomy of a Request for Execution of Rules Diagram ... 47
Appendix C: General Authoring and Integration Concepts ... 48
Appendix D: Accessing Dynamics 365 Directly from Rule Helper .. 49
Appendix E: Methods for Executing Rules from Dynamics 365 and Power Platform 58

4.4 Dataverse Events .. 61
4.5 Rules Engine Action .. 63
4.6 Run Rules Button ... 64
4.7 Workflow Activity .. 66
4.8 Form Events... 67
4.9 JavaScript .. 71
4.10 Power Platform .. 72

Appendix F: Rules Configuration and Settings ... 83
Appendix G: Endpoint Override Configuration .. 96
Appendix H: Azure App Service Plan & Application Insights Configuration ... 99

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 3 of 142

Appendix I: Dataverse Connectivity and Authorization ... 102
Appendix J: Dynamics 365 Tracing and InRule Event Logging .. 109
Appendix K: License Management ... 118
Appendix L: New Releases and Upgrading Versions ... 123
Appendix M: Known Issues, Limitations and Troubleshooting ... 128

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 4 of 142

1 Introducing InRule for Microsoft Dynamics 365

InRule for Microsoft Dynamics 365 enables rich rule integration with Microsoft Dynamics 365 and
Microsoft Power Platform. The end-to-end solution is comprised of:

• irAuthor with irX for Dynamics 365 – extension to irAuthor, InRule’s premium desktop rule
authoring tool

• InRule Solution for Dynamics 365 – available from Microsoft AppSource
• Rule Execution Services for Dynamics 365 - InRule SaaS or Azure Marketplace

This guide focuses on the deployment of the Rule Execution Services for Dynamics and corresponding
InRule Dynamics Solution to your environment. The InRule Dynamics Solution may be deployed directly
from the Microsoft AppSource (recommended in most cases) or from the Integration Framework zip file
downloaded from the InRule Support Site. This guide details the primary deployment paths for InRule
SaaS or self-hosted in Microsoft Azure as well as on-premises Dynamics.

Before You Begin
You may first want to familiarize yourself with the irX for Microsoft Dynamics 365 irAuthor Extension by
reading the irX for Microsoft Dynamics 365 Help Documentation. This irAuthor extension will allow you to
author rules against Dynamics entities and become familiar with the types of rules-driven processes that
can be implemented. After testing locally from your desktop using irVerify with either your own rule app or
the DynamicsRules sample rule app, the rules will be ready for execution from Dynamics or Power
Platform. At this point, this guide will become highly relevant for deploying the InRule solution and
services to establish the selected integration patterns.

There are several options available when it comes to choosing how to integrate InRule with Dynamics
365 and Power Platform. Beyond Dynamics, virtually any Power App (Model-driven & Canvas) or Power
Automate Flow that leverages the Dataverse can benefit from event-driven or on-demand rule execution.
With InRule and Power Platform, business users have unprecedented flexibility to automate end-to-end
business processes such as claims processing, product eligibility, CPQ pricing models and countless
other scenarios.

This document provides an addendum, Appendix E: Methods for Executing Rules from Dynamics 365
and Power Platform that discusses the different options available for running rules beyond what the
primary deployment steps cover. It is a good next step to review for implementers who are looking for
advanced options to address their specific decision automation concerns.

Additional material is available on the Downloads section of our support website. Please see Appendix A:
Additional Resources for support website detail. To find what’s new, see Appendix L: New Releases and
Upgrading Versions.

https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrule-dynamics-azure?tab=Overview
https://support.inrule.com/hc/en-us/articles/360058138552-Download-InRule-Software
https://inruledynamicsappsource.blob.core.windows.net/documents/irXForMicrosoftDynamicsCRMHelp.pdf
https://inruledynamicsappsource.blob.core.windows.net/documents/DynamicsRules.ruleappx

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 5 of 142

2 Understanding your options

This guide is oriented towards deploying InRule as a cloud-based solution in Microsoft Azure to
interoperate with Microsoft Dynamics 365 Online. Alternatively, Dynamics 365 on-premises version 9.0
and up is still supported via local installation of the InRule services.

The following sections describe which deployment scenario will be the most applicable depending on your
needs:

• 2.1 Microsoft Dynamics 365 (Online) – InRule SaaS-hosted Rule Execution Service
• 2.2 Microsoft Dynamics 365 (Online) – Self-hosted Rule Execution Service in Microsoft Azure
• 2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS Rule Execution Service
• 2.4 Other Integration Scenarios

The primary consideration for InRule SaaS vs self-hosted Azure generally depends on if your
organization is already setup to manage an Azure subscription and services.

• If your organization does not have an Azure subscription, this can be compelling rationale to
go with InRule SaaS and forgo the overhead of Azure management and deployment.

• If your organization has an Azure subscription, it does not exclude you from going with InRule
SaaS, but it may indicate that your IT department has requirements or preferences for self-
managed Azure solutions.

Either way, this guide will provide you with the information to help determine which InRule configuration
will best suit your needs, including Government Cloud and other considerations.

2.1 Microsoft Dynamics 365 (Online) – InRule SaaS

InRule for Dynamics 365 is now available via InRule SaaS, in which case many of the deployment steps
in this document are not applicable and will be managed for you. This is the most stream-lined
deployment available to both qualified Trial users and licensed customers.

1. Important: If you are new to InRule and do not have an InRule SaaS subscription, you can
request a free trial here and specify that you would like to integrate it with your Dynamics 365
instance.

With InRule SaaS, the deployment steps are significantly reduced by eliminating the need to install the
InRule App Services in Azure. This narrows the deployment focus down to irAuthor with irX for Dynamics
365 and the InRule Dynamics Solution from the Microsoft AppSource. The main deployment steps in this
scenario are summarized as follows:

Deployment Step Installation Type

1. irAuthor with irX for Dynamics 365 InRule installer via the InRule Support Site

2. Rule Execution Services for Dynamics 365 *managed by InRule SaaS Support

3. InRule Solution for Dynamics 365 Microsoft AppSource (or script-based)

https://inrule.com/platform-overview/inrule-deployment-options/saas-our-cloud/
https://inrule.com/inrule-trial-dynamics-appsource/
https://support.inrule.com/
mailto:support@inrule.com
https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 6 of 142

All information to set up the connectivity between Rule Execution Services hosted by InRule SaaS and
your organization’s Dynamics instance can be managed through the InRule SaaS Portal. The following
configuration will be managed through the Portal. More information can be found in Appendix I: Dataverse
Connectivity and Authorization.

Entered by users in the SaaS Portal – configuration information for the Rule Execution App Services

• The Organization URL for Dynamics.
• Service account credentials for Dynamics – used to allow the InRule SaaS-hosted Rule Execution

Service to connect to Dynamics. Alternatively using S2S authentication, InRule can be granted
consent as a Trusted App to your Azure AD.

Provided to users in the SaaS Portal – configuration information for the InRule Dynamics Solution:

• SAS Key - Azure Relay key that the Rule Execution App Service is configured to listen on
• Azure SB Namespace

The net effect of an InRule SaaS deployment is that after the above pre-requisites are met, you get to
skip ahead to Section 3 Configuring the InRule Solution for Dynamics 365. Beyond this initial setup the
remainder of the guide will be beneficial for detailing advanced rule execution methods and
troubleshooting.

2.2 Microsoft Dynamics 365 (Online) – Self-hosted in Microsoft Azure

If you are using Microsoft Dynamics 365 (Online), you will be hosting InRule using a Platform-As-A-
Service (PaaS) model on Microsoft Azure. When setting up the InRule App Services, ensure that all
Azure components and the Dynamics installation are in the same geographical location to reduce timeout
exceptions due to network latency. The Azure resources can be deployed using either the ARM Template
shipped in the integration zip or via the Azure Marketplace. You can find more info about these options in
Section 3.3

This document discusses deploying the following four components:

1. Catalog App Service and Azure SQL Database
2. Azure Relay
3. Rule Execution App Service for Dynamics 365
4. InRule Solution for Dynamics 365

Section 3 of this document, Performing the Installation: In Azure, provides a complete walkthrough.

2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS

If you are using Microsoft Dynamics 365 (On premises) or plan to deploy to the cloud using an
Infrastructure-As-A-Service (IaaS) model, you will be hosting our integration framework via Internet
Information Services (IIS) on a Window Server OS. This document discusses the following 3 components:

1. Catalog Web Service and Database
2. Rule Execution Web Service for Dynamics 365 On-Premises
3. InRule Solution for Dynamics 365 On-Premises

Section 4 of this document, Performing the Installation: On-Premises, provides a complete walkthrough.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 7 of 142

2.4 Other Integration Scenarios

You are welcome to look at alternate integration options. The following are some possible integration
scenarios that you may pursue, which may require either deployment or solution customization. Please
take the opportunity to verify the rationale for customization with InRule to ensure plausibility.

• RuleHelper only integration with the InRule native (non-Dynamics) rule execution service
• Limited Integration with Microsoft Dynamics 365 (Online) without the use of an Azure Relay

While all of these are possible routes, they will not work with the Integration Framework we provide off the
shelf. As such, we strongly encourage that you follow the model outlined in this guide to start with, until
you’ve acquired a more advanced understanding of how all of the pieces of the InRule® for Microsoft
Dynamics 365 Integration Framework work together to provide a solution.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 8 of 142

3 Performing the Installation: In Azure

This section discusses the steps needed to integrate InRule with Microsoft’s online version of Microsoft
Dynamics 365. Using this scenario InRule components are hosted on Microsoft Azure.

3.1 Solution Architecture Overview

Rule Execution App Service for Dynamics 365
The Rule Execution App Service is responsible for loading Dynamics entity data, executing rules against
loaded data, and responding to Dynamics with rule execution results.

InRule Solution for Dynamics 365
The InRule Solution contains a custom plugin, an endpoint, client resources, a configuration form, and a
security role called InRule Integration Administrator. This role is created with read access to all entities for
use as a service account, but a different role can be used if desired. The solution must be configured to
communicate with the Azure Relay.

Catalog App Service and Azure SQL Database
A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution App
Service. This Catalog Service will be hosted as an Azure App Service. The back end of the Catalog
Service utilizes an Azure SQL Database for retrieval and persistence of Rule Applications.

Azure Relay
Dynamics 365 is designed to communicate to third party services through an Azure Relay. Utilizing an
Azure Relay is the preferred communication mechanism allowing for security and quick horizontal scaling
of services. The Rule Execution App Service connects to the Relay and registers itself as a Relay
listener. When Dynamics 365 makes a request to the Relay, the Relay relays that message to a listener

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrulesaas?tab=overview
https://appsource.microsoft.com/en-us/product/web-apps/inruletechnology-1043512.inrulesaas?tab=overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 9 of 142

and allows for two-way communications for as long as the connection is open.

An Azure Relay is a specific kind of Azure Service Bus, that exists as a separate resource type in Azure.
Within the context of the InRule architecture, the Relay performs the same function as a “traditional”
Service Bus but includes some extra functionality specific to WCF relays. Relays also feature Hybrid
Connections, but the Rule Execution App Service currently only supports WCF relays. For the sake of
consistency with Microsoft’s Dynamics documentation, we will refer to it as a Relay throughout this
document. Microsoft’s information about Azure Relay network security can be found here.

3.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in
the next section.

.NET Framework
The InRule for Microsoft Dynamics 365 integration framework is built against Microsoft .NET Framework
v.4.7.2. For on-prem installations of the framework, ensure you have this .NET version installed.

Optional Resource Files
The following file can be downloaded from our support website’s downloads section:

• InRule for Microsoft Dynamics 365 Integration Framework.zip

This zip file contains several resources that can be used in advanced deployments. A typical installation
does not require the use of these resources, as all of the required deployment assets are available online.
However, certain deployment scenarios do require the assets contained in this zip file – such as: InRule
Solution for Dynamics 365.

After you have downloaded this file, but before extracting, make sure that you go to the file properties for
the zip and select Unblock. If the zip file is not unblocked before extracting, the deployment scripts will
not be able to execute successfully.

After unblocking the zip file, extract the contents to a working folder. When you are finished, you should
have a directory structure that looks like this:

https://docs.microsoft.com/en-us/azure/azure-relay/network-security
https://support.inrule.com/hc/en-us/articles/360058138552-Download-InRule-Software

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 10 of
142

Rule Authoring Environment
A Rule Authoring Environment is used to upload a Rule Application to your catalog app service. A Rule
Authoring Environment is a machine or virtual machine where irAuthor has been installed with the irX for
Microsoft Dynamics 365 extension. If you followed the instructions outlined in irX for Microsoft Dynamics
365 Help Documentation then you should already have a rule-authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to
be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX
for Microsoft Dynamics 365 license for the duration of this process. If you’re a system administrator who
does not intend to perform rule authoring duties after the deployment is up and running, you can either
chose to borrow an environment from someone who will use a rule authoring environment, or you will
want to be sure to deactivate your license when you’re finished with your deployment responsibilities.

Administrative Accounts
Dynamics 365 Organization Service URI: You will want to have the root URL of the organization web
service exposed by your Dynamics 365 instance. The server URL is usually in the format of
“https://organization-name.crm.dynamics.com”

│ InRule For Microsoft Dynamics CRM Integration Framework.zip
│
└───InRule For Microsoft Dynamics 365 Integration Framework
 │
 ├───DynamicsDeployment
 │ │ Deploy-CrmPackage.ps1
 │ │ ...(many other supporting files)
 │ │
 │ ├───PkgFolder
 │ └─ ...(many other supporting files)
 │
 ├───RuleApplications
 │ DynamicsRules.ruleappx
 |
 ├───RuleExecutionAzureService
 │ Register-AzureApp.ps1
 │ InRule.Dynamics.Service.json
 │ InRule.Dynamics.Service.parameters.json
 │ InRule.Crm.WebJob.zip
 |
 ├───RuleExecutionOnPremService
 │ DeployScript.ps1
 │ InRule.Crm.WebService.deploy-readme.txt
 │ InRule.Crm.WebService.SetParameters.xml
 | ...(many other supporting files)
 │
 └───RuleHelperDeployment
 │ InRule.Crm.RuleHelper.dll
 └─ ...(many other supporting files)

https://inruledynamicsappsource.blob.core.windows.net/documents/irXForMicrosoftDynamicsCRMHelp.pdf
https://inruledynamicsappsource.blob.core.windows.net/documents/irXForMicrosoftDynamicsCRMHelp.pdf
https://organization-name.crm.dynamics.com/

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 11 of
142

Dynamics Service Account Login and Password: You will want to have a username and account
created specifically for use by the InRule for Microsoft Dynamics 365 Framework App Service. This
account will need a role that has read access to all entities that will be used in running rules. The solution
includes the ‘InRule Integration Administrator’ role, which is set up with read privileges for all base and
custom entities when the solution is installed. It is important to note that its permissions are not
dynamically updated and will have to be done manually. This user account will not be needed if you
decide to create an S2S user account outlined in Appendix I: Dataverse Connectivity and Authorization.

Administrative Password to use for SQL Server: You should decide what username and password
you want to use for administrative privileges on the SQL Server. You will use this password when
following the referenced catalog setup guide.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to
connect to the SQL Server Database. In a more secure environment, a separate SQL User should be
created that only has access to the single database needed by the catalog. It is up to the reader of this
document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and
password you want to use for administrative privileges within Catalog. You will use this password when
following the referenced catalog setup guide and will need to provide it when deploying the Execution
Service.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the
reader to go through the process of utilizing the Catalog Manager to change these credentials to be more
secure.

Administrative Login and Password for Microsoft Azure: You must have a username and password
that will be used to perform administrative tasks within Microsoft Azure (NA if using InRule SaaS).

InRule Azure License File
You will need a special .xml file used for licensing InRule in an Azure cloud environment. This may have
been provided with your InRule Welcome package. Refer to Appendix K: License Management for more
information. You can contact support@InRule.com if you have additional questions.

Deciding resource names
The following worksheet can be used to decide what to name Azure resources as you go through this
Guide.

Many of these resources must have names that are unique in the world; they are hosted on Microsoft
Azure and are given domain names that match. We recommend creating a “Base” name that does not
exceed 14 characters. We recommend encoding an organization name, an application name, and an
environment name into this ‘Base’ name. For Example:

{ApplicationAbbreviation}{OrganizationAbreviation}{EnvironmentAbreviation}

MyAppInRuleDev
12345678901234

You can choose to follow this convention or invent your own.

mailto:support@InRule.com

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 12 of
142

Resource and Description

Example Name

Base Name

MyAppInRuleDev

Azure Resource Group Name

MyAppInRuleDevResourceGroup

Azure SQL Server Name
must be lower case

myappinruledevsqlserver

Catalog Database Name

MyAppInRuleDevCatalogDb

Catalog App Service Name

MyAppInRuleDevCatalogService

Relay Namespace

MyAppInRuleDevRelay

Rule Execution App Service Plan Name

MyAppInRuleDevRuleExecutionAppServicePlan

Rule Execution App Service Name

MyAppInRuleDevRuleExecutionAppService

3.3 Deploying and Configuring Components

There are two primary paths for deploying the required InRule components:

1. Microsoft App Stores: Azure Marketplace and Microsoft AppSource - (Recommended) Provides
a straightforward, UI-driven process that simplifies deployment and eliminates the need to
individually deploy both the Catalog App Service and the Rule Execution App Service. Both the
Azure Marketplace (for InRule App Services) and the Microsoft AppSource (for the InRule
Dynamics Solution) must be utilized to deploy their respective InRule Apps (see matrix below).

2. Manual Deployment using ARM Templates and Scripts: Manually deploy Azure Resource
Management (ARM) Templates through either the Azure Portal, PowerShell, or Azure CLI; then
deploy the InRule Solution via PowerShell to your Dynamics 365 instance.

InRule components by deployment path:

InRule Component Microsoft App Stores Manual Deployment

Catalog App Service

Azure Marketplace

ARM Template

Rule Execution App Service for
Dynamics 365

ARM Template

InRule Solution for Dynamics 365 Microsoft AppSource PowerShell Script

While deploying from Azure Marketplace and AppSource is generally recommended for initial
environments; in advanced scenarios the manual deployment resources can be leveraged for multi-

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrule-dynamics-azure?tab=Overview
https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview
https://github.com/InRule/AzureAppServices
https://github.com/InRule/AzureAppServices
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrule-dynamics-azure?tab=Overview
https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager
https://github.com/InRule/AzureAppServices/tree/master/Dynamics
https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 13 of
142

environment DevOps automation. Also note, choosing either path does not require you to stay on the
same path across all components; as the deployment options can be mixed and matched as situations
warrant.

In either deployment path, if you wish to leverage a server-to-server (S2S) connection between the rule
execution service and your Dynamics environment, you’ll need to first register an Azure Active Directory
Application. A walkthrough of this can be found in Appendix I: Dataverse Connectivity and Authorization

While the following sections are primarily focused on the manual deployment path, there are still relevant
config and testing steps which apply to both paths. For Marketplace and AppSource deployments, you
may skip the manual deployment steps and go directly to the relevant sub-sections for license
management, configuration, and setup verification.

3.3.1 Catalog App Service
This section is only required for those following the ARM Template Deployment Path.

Installing the Catalog App Service
The first major objective for a Dynamics 365 implementation is the deployment of a Catalog service to
Microsoft Azure.

During this process, you will be creating:

• An Azure SQL Server
• An Azure SQL Server Database
• An Azure App Service to host the InRule Catalog in the Azure cloud

When you are finished, you should be able to connect to this app service from a locally installed copy of
irAuthor, and successfully save a Rule App to the catalog.

The full process of installing the Catalog in Microsoft Azure is outlined in the documentation found on the
InRule AzureAppServices GitHub, which can be found here:

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

Please ensure you are installing the Catalog service, not the irServer Rule Execution Service, which is
found on the same page and is not compatible with Dynamics 365 integration.

Uploading License File
Once you’ve finished deploying the Catalog Service, you’ll need to upload a license file to it in order for
the catalog service to function. The simplest way to upload the license file is via the Azure App Service
Editor. Alternatively, you can deploy the license file via FTP. A walkthrough of how to upload the license
file by either of these methods can be found in Appendix K: License Management.

Testing the Catalog App Service by uploading the sample Rule App
At the conclusion of the installation process outlined above you should have a Catalog URI, Username,
and Password to use to connect to the catalog service.

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 14 of
142

To begin, if you have not already done so, download the DynamicsRules sample rule app. Then utilize
irAuthor to upload the rule app to your InRule Catalog. If using InRule SaaS or deploying from the Azure
Marketplace, you may already have the sample rule app in your catalog.

1: Navigate to the file in your file explorer and double click on it, this will open the
file with irAuthor.

2: Save the Rule Application by choosing File  Save As Save to Catalog

3: Choose Add Catalog, enter connection information for the Catalog Server that
you deployed, and then select Use This.

4: Save with the name DynamicsRules

https://inruledynamicsappsource.blob.core.windows.net/documents/DynamicsRules.ruleappx
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrulesaas?tab=overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrulesaas?tab=overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 15 of
142

Save the Rule Application to the Catalog using the name of DynamicsRules.

At this point, if you can click OK without an error, we have successfully saved the DynamicsRules Rule
App to the new Catalog that you have created. We can now continue by creating the Relay Namespace.

If you have any trouble getting to this point, it is advised that you resolve any issues with the Catalog
before attempting to continue.

3.3.2 Rule Execution App Service for Dynamics 365
This section is only required for customers who are self-hosting following the ARM Template Deployment
Path.

Next, we will deploy the InRule Rule Execution service as an Azure WebJob running on an App Service,
along with all its Azure resource dependencies. To make this process easier, we’ll be using an Azure
Resource Manager (ARM) template, which allows us to deploy and configure all the Azure resources the
Rule Execution Service relies on.

There are a number of methods for deploying an ARM template; this documentation will detail two: via
Azure CLI and via PowerShell.

Alternatively, while this document does not provide a walkthrough of it, the ARM template provided is
configured to work with Azure Portal deployment. For an overview of how to leverage ARM deployment
through the Azure Portal, reference Microsoft’s documentation: Deploy resources with ARM templates
and Azure portal and navigate to the section titled “Deploy resources from custom template”.

You can navigate directly to the Azure Portal page for deploying an ARM template at this link: Custom
deployment - Microsoft Azure.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://portal.azure.com/#create/Microsoft.Template
https://portal.azure.com/#create/Microsoft.Template

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 16 of
142

1: Registering an Azure Active Directory Application (Optional)
If you are self-hosting, you will need to provide a Dataverse connection string when deploying the Azure
resources so that the Execution Service can communicate back to Dataverse. If you already have a
known, working Dataverse connection string for connecting to the environment you’re integrating with you
may be able to use that, but if not, you will need to choose an authentication method and build a
connection string for that. This may require creating an Azure Active Directory application to continue,
review Appendix I: Dataverse Connectivity and Authorization for more information and steps on how to
register an application.

2: Locate azuredeploy.parameters.json
Before deploying the ARM template, we need to define certain parameters.

The required azuredeploy.json and azuredeploy.parameters.json files can be downloaded here -
AzureAppServices/Dynamics at master · InRule/AzureAppServices · GitHub.

Alternatively, they can be located within the InRule for Microsoft Dynamics 365 Integration Framework.zip
file downloaded in Section 3.2: Optional Resource Files.

3: Update parameters
Open the file with your text editor of choice and edit the parameters listed below

https://github.com/InRule/AzureAppServices/tree/master/Dynamics

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 17 of
142

`

1. appServiceName Provide a name for the Azure App Service that the Rule Execution Service will run on.

2. relayName Provide a name for the Azure WCF Relay (aka Azure Relay). This is NOT the desired
namespace URL for the Relay, it should be the desired name of the actual Azure resource.

3. catalogUri The URI for the Catalog Service that will be used
Example:
https://myappinruledevcatalogservice.cloudapp.net/service.svc

4. catalogUser Username for Catalog Service, default value is ‘admin’.

5. catalogPassword Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

https://myappinruledevcatalogservice.cloudapp.net/service.svc

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 18 of
142

6. ruleAppLabel Optionally supply a default label used by the execution service to identify the ruleapp
version to run.

7. crmConnectionString Provide a Dynamics connection string of type OAuth to use a regular named account and
type ClientSecret for S2S authentication. Information on connection string formatting can be
found here:
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-
tooling/use-connection-strings-xrm-tooling-connect
For OAuth authentication, you can use the default app provided by Microsoft instead of
creating and configuring your own application. You can find more about this, as well as the
transition from WS-Trust (Office 365) to OAuth authentication here:
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-
office365-deprecation

If using a named account, it should have the ‘InRule Integration Administrator’ role, or a
custom role with read access to the entities used to run rules. It is important to note that the
‘InRule Integration Administrator’ role is not updated when new entities are created. Refer to
Appendix I: Dataverse Connectivity and Authorization for more information.

Important: Some customers have reported needing to provide a username in the
format “domain\username” in order to successfully connect using IFD.

8. appServicePlanName
(If you wish to override the default
value)

This is an optional parameter, that if left blank, will result in the ARM Template creating an
AppServicePlan for you, using your defined appServiceName and appending “Plan” to the
end. For example, defining your appServiceName as “ExampleAppService” would yield the
following automatically generated App Service Plan name: “ExampleAppServicePlan.”

This parameter is intended to be used if you wish to either have a new AppServicePlan be
created using a different name than the one outlined above, or for defining the name of a
pre-existing App Service Plan that you would like to create your resources under. In the
latter case, additional steps are required. For a more comprehensive guide on how to
deploy your resources under an existing AppServicePlan, refer to Appendix H: Azure App
Service Plan Configuration

9. createOrUpdateAppServicePlan By default, this value is set to true, and an App Service Plan will be created by the ARM
template or updated if it already exists using the default naming convention. If you wish to
deploy your app service to an already existing App Service Plan rather than create a new
one, set this value to false and reference Appendix H: Azure App Service Plan and
Application Insights Configuration.

10. inRuleVersion (To deploy most
modern version, leave as default
value)

This parameter allows the user to configure what version of the InRule Rule Execution
Service they wish to deploy. By default, this parameter will be set to the most modern
version.

11. appInsightsConnectionString Provide a connection string if you want to Azure Application Insights for logging and
telemetry. For more information on the logging view Rule Execution Service Event Log.

Once you’ve finished configuring your parameters, save the completed parameters file and keep a spare
copy on hand for future upgrades or automation.

4: Option 1: Deploy ARM Template with Azure CLI
Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The
following will detail how to use the Azure CLI to deploy the ARM template (Note, this section assumes
Azure CLI has already been installed):

3.1 Run Command Prompt or PowerShell

3.2 Navigate to the RuleExecutionAzureService folder

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 19 of
142

3.3 Enter “az login” to login into Azure

3.4 Enter your Azure admin credentials to login when prompted in the new
browser window opened

3.5 Select the appropriate subscription

If your Azure account has access to multiple subscriptions, you will need to set your active
subscription to where you create your Azure resources:

3.6 Create Resource group

If you have not created a resource group yet, you will need to create one. You will need to define a
name and a geographic location for where to host the resource. This example uses Central US:

3.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

If the template deploys successfully, you will see a result that looks similar to this:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 20 of
142

The value that is output is your Azure Relay key, which is a value you will need to configure your
Dynamics instance in a later step.

5: Option 2: Deploy ARM Template with PowerShell
(If you have already deployed the ARM template via Azure CLI in the section above, this section is not
necessary)

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The
following will detail how to use PowerShell to deploy the ARM template (Note, this section assumes Azure
PowerShell has already been installed):

4.1 Run PowerShell

4.2 Navigate to the RuleExecutionAzureService folder

4.3 Enter “Connect-AzAccount” to login into Azure

4.4 Enter your Azure admin credentials to login when prompted in the new
browser window opened

4.5 Select the appropriate subscription

Upon logging in, your default subscription information will be displayed:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 21 of
142

If this is not the subscription you want to deploy to, you can use the “Select-AzureRmSubscription”
cmdlet to change the targeted subscription. Just replace “SubscriptionNameHere” with the name of
the desired subscription:

4.6 Create Resource Group

If you have not created a resource group yet, you will need to create one. You will need to define a
name and a geographic location for where to host the resource. This example uses Central US:

4.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

If the deployment is successful, you should see an output similar to this:

Note the value of “relayKey” underneath the “Outputs” heading. This value is your Azure Relay key
and will be needed when configuring your Dynamics instance in later steps.

6: Verify Setup
Navigate to the Azure portal and locate the deployed App Service

Click on the app service, and on the nav-bar that appears to the left of the resource overview, select
WebJobs

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 22 of
142

Ensure the InRule.Crm.WebJob is present and its “Status” is set to “Running”

7: Upload License File
Regardless of how you choose to deploy the ARM template, you’ll need to upload a license file to it for
the rule execution app service to properly function. The simplest way to upload the license file is via the
Azure App Service Editor. Alternatively, you can deploy the license file via FTP. A walkthrough of how to
upload the license file by either of these methods can be found in Appendix K: License Management.

3.3.3 InRule Solution for Dynamics 365
At this point, all the Azure Requirements are met. The Azure Relay should be listening for incoming
communication from Dynamics. We must now setup Dynamics, which can be done with either an
AppSource Deployment or a PowerShell Deployment. If trying to deploy a previous version of the
Dynamics solution, the PowerShell Deployment must be used.

• AppSource Deployment -- You can install the InRule Solution through Microsoft AppSource.
The InRule listing can be found here in the Microsoft AppSource. Once the solution is deployed,
you can proceed to Configuring the InRule Solution in Dynamics

• PowerShell Deployment -- You can follow the guide below to deploy the Dynamics package via
PowerShell script. This is required if deploying a previous version of the Dynamics solution and

https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 23 of
142

relies on the resources from the Integration Framework zip file outlined in the section Optional
Resource Files

1. Important: You only need to deploy the InRule Solution by one of the two above methods. Doing
both is unnecessary.

2. Important: Only deploy the solution using one of the two above methods. Do not manually import
included solution files.

1: Execute Deploy-CrmPackage.ps1
Navigate to the DynamicsDeployment directory of the InRule for Microsoft Dynamics 365 Integration
Framework.zip where the Deploy-CrmPackage.ps1 script is located

If you are self-hosting and using S2S authentication in the execution service, you can pass in the Azure
Active Directory application ID as the “AzureAppId” parameter to the Deploy-CrmPackage.ps1 script. This
will automatically create a new Application User and assign it the included ‘InRule Integration
Administrator’ role, but if desired you can skip this parameter and manually create Application User
through the Power Platform Admin Center. If you were not involved in registering your Azure Active
Directory application, your Azure administrator should be able to provide you with this ID. If you are using
OAuth authentication in the execution service, you do not need to provide this parameter.

Additionally, the script supports 2 other parameters: “SbNamespaceAddress” and “SasKey”. These
parameters allow you to pass in the fully qualified Relay Namespace Address
(e.g.: https://<<RelayNamespace>>.servicebus.windows.net/<<SB Relay Path>>) and Relay Key for the
Relay your Rule Execution App Service is listening on and will allow the script to auto-configure your
Dynamics instance to point at that Relay. These parameters operate independently of the “AzureAppId”
parameter; they may be alongside it or on their own. However, if you opt to provide a value for either
“SbNamespaceAddress” or “SasKey,” you must provide a value for the other as well.

If you choose not to provide the “SbNamespaceAddress” and “SasKey” parameters, you will receive a
notification (shown below) after the script finishes executing reminding you that you need to manually
configure the SAS Namespace and SAS Key as outlined in Step 4 of this section.

2: Provide Dynamics 365 Service Credentials
By default, the script will display an interactive login window to connect to Dynamics. Please be sure to
check the ‘Display list of available organizations’ to make sure that you select the correct instance of
Dynamics to install to!

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 24 of
142

Alternatively, the Deploy-CrmPackage.ps1 script also accepts a Dynamics Connection String:

.\Deploy-CrmPackage.ps1 -CrmConnectionString
'AuthType=Office365;Url=https://{DYNAMICSURL}.crm.dynamics.com/;Username={DYNAMICSUSERNAME};Pa
ssword={DYNAMICSPASSWORD}'

Observe that no errors occur while the Deploy Script is running.

1. Important: This deployment can take a long time to complete. In most cases it takes around 20
minutes.

3: Configure S2S App User
Dynamics 365 supports S2S authentication via Azure AD app as an alternative to username/password
authentication. This removes the need to create a licensed user and avoids tying authentication to a
regular named account. If you are using InRule SaaS, this Azure AD app has already been created and
configured for you, but if you are self-hosting you can create your own Azure AD app as outlined in
Registering an Azure Active Directory Application (Optional) and use it to authenticate.

Whichever method you are using, you will need to create an associated ‘Application User’ inside
Dynamics. When configuring a InRule SaaS setup, you can follow the instructions in Appendix I:
Dataverse Connectivity and Authorization, which will create and set up the Application User for you. If you
are self-hosting, follow the steps here to create the application user in your environment. You will need
the application ID from the earlier registration steps and the name of the Dynamics security role you want
to assign to the user: Create an application user

1. Important: These steps are only necessary for users that want to leverage S2S authentication
and are self-hosting. If you are self-hosting, or using username/password OAuth authentication,
you do not need to create an application user

4: Configure the InRule Solution in Dynamics
Next, we need to configure the Dynamics Solution that has been deployed to point to the Rule Execution
Service that is already available on Azure. We will need to have the Relay Namespace and the Relay Key

https://learn.microsoft.com/en-us/power-platform/admin/manage-application-users#create-an-application-user

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 25 of
142

(SAS Key) ready for this step. You can find more information about these settings in the Rule Execution
App Service for Dynamics 365 section.

Navigate to the Advanced Settings for your organization, then the Rules Configuration page under the
InRule group:

You will need to define values in the following fields.

Configuration
Form Fields

Details on these settings are found in “Rule Execution App Service for
Dynamics 365” section.

Endpoint Name For basic configuration, this can be left as is.
SAS Key Name The key output by the ARM template is the ‘RootManageSharedAccessKey’ key,

so this value can be left as the default in most scenarios.
SAS Key This is the key secret value, and is output by the ARM template after completion

of the deployment. If you did not get the value during deployment, you can find it
using the steps in Locate SAS Key in Azure Portal

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 26 of
142

Note: If you provided the “SasKey” parameter in Step 2 of this section, this
value will already be set.

Azure SB
Namespace
Address

Change the Relay namespace here, as the default value of ‘inrule-crmonline’ will
not work for you. The relay namespace is the same value provided for the relay
name in the ARM template parameters file.

Using the Relay Namespace and the Relay Path, construct the address as
follows: https://<<RelayNamespace>>.servicebus.windows.net/<<SB Relay
Path>>

Note: If you provided the “SasName” parameter in Step 2 of this section,
this value will already be set.

SB Relay Path Unless you have changed the corresponding setting in rule execution app service,
this value can be left as the default, which is ‘ruleexecution’

The following screenshots show the Service Endpoint Configuration screen before and after
configuration.

• [#1 in screenshot] SAS Key Name
• [#3 in screenshot] SAS Key
• [#4 in screenshot] Azure SB Namespace Address
• [#5 in screenshot] SB Relay Path

Please note that you must click on “Change” [#2 in screenshot] before the SAS Key can be entered.

For a more complete description of all the configuration options available, reference Appendix F: Rules
Configuration and Settings

Notice: If you are using the standard Azure US environment ‘AzureCloud’, then the provided domain
suffix will work fine. However, if you are using an alternate Azure Environment such as US Government or
an international environment – be sure to update the suffix to the appropriate value for your region.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 27 of
142

Be sure to click save, and to observe the “Saved Changes” notice:

Once changes have been saved, configuration can be tested by clicking the test button [#7 in
screenshot]. This test configuration tests these three things:

1. Execution Service Connection. Test sends a request to the execution service that was deployed
and configured to make sure that it is setup correctly.

2. Execution Service to Dynamics Connection. Test makes a request from the execution service to
make sure that it can make a request back to Dynamics with the connection information
configured on the App Service.

3. Rule Catalog Connection. Test makes a request to the Rule Catalog with the connection
information configured on the App Service.

If all the tests succeed, the system has been configured correctly. If any of the tests fail, check the
configurations for the subject under test.

5: Verify a successful deployment!
A ‘Run Rules’ button will now exist on the edit form of all Dynamics entities. The way this button behaves
will depend on the settings that have been configured under the Rule Configuration section; this
document assumes the default configuration behavior. To understand what settings are available and
what they mean, please see Appendix F: Rules Configuration and Settings of this document.

Open an Account and execute ‘Run Rules’. The default deployment is configured to run a Rule App from
the catalog named DynamicsRules, which is what we uploaded to the catalog in the Verify Catalog stage.
If everything has been set up correctly, you should see the “Rule Execution Completed” message and the
description of the account will be updated to provide the date and time.

6: Getting Users Ready
While the parties responsible for deploying out InRule can likely leverage the Run Rules button without
issue as they’re likely to be system administrators, if your organization intends to empower non-admin
users to be able to leverage the Run Rules button, they’ll encounter permission issues. This is due to rule
execution requiring access to various Dynamics configuration entities that normal users don’t generally
have permissions to touch.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 28 of
142

To circumvent this, the InRule Solution for Dynamics ships with a pre-configured role called the “InRule
Rule Executor,” which contains the bare minimum permission set necessary for users to be able to make
use of the Run Rules button. You’ll need to assign any users in your organization to this role if the intent
is to empower them to run rules through the Dynamics UI.

If there are any issues with executing rules and you are using an S2S user account from Section 3.2,
check Appendix M: Known Issues, Limitations and Troubleshooting of this document. If you are using the
connection string, make sure the user account specified has the necessary privileges to access the
particular entity.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 29 of
142

4 Performing the Installation: On-Premises

This section discusses the steps needed to integrate InRule with Microsoft’s on-premises version of
Microsoft Dynamics.

This section assumes that you already have an IIS web server and an on-premises version of Dynamics
deployed and configured.

4.1 An overview of the Components needed

Catalog Web Service and Database
A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution Service.
This Catalog Service will be hosted as a web service on an IIS server. The back end of the Catalog
Service utilizes a SQL Server or Oracle database for retrieval and persistence of Rule Applications. The
Installation Documentation and InRule Installer, which will be used to install the service itself, are
available on our support website’s downloads section provides instructions for setting up the catalog.

Rule Execution Web Service for Dynamics 365 On-Premises
The WCF Web Service implementation is designed to be generically applied to any given Dynamics Entity
and corresponding InRule rules that may apply to that Entity. After the web service is published, the
service can be directed to run various Rule Applications against different Entity types by passing
arguments in the REST calls. This will require a separate deployment than the Catalog Web Service; this
process will be covered in the “Deploy the Rule Execution Web Service” section.

InRule Solution for Dynamics 365 On-Premises
The RuleExecutionServices solution contains a custom plugin, client resources, and a configuration
form. Unlike the Online solution, this is configured to work directly against the execution service, rather
than requiring the “middle-man” of the Azure Relay.

Dynamics CRM
On Premise

Server(s)

Business Rule Service as
WCF REST Service

Custom
Plugin or
Activity

InRule Rule Catalog
Web Service

SQL Server or
Oracle

Catalog DB
Rule Authoring in

irAuthor using InRule for
Dynamics CRM

HTTPS

HTTPS

HTTPS

HTTPS

Web Browser Org
 Service

“Execute” or
CRUD event

 HTTPS
POST for Rules

 Full Page
HTTPS GET/POST

Batch Processor
(or other clients)

HTTPS POST
for Rules

https://support.inrule.com/hc/en-us/articles/360058138552-Download-InRule-Software

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 30 of
142

4.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in
the next section.

Required Files
The following files should be downloaded from our support website’s downloads section before you begin:

• InRule for Microsoft Dynamics 365 Integration Framework.zip
• InRule Catalog Installer – InRule Installer.exe

Please download and extract each of these archives to corresponding subdirectories within a working
folder.

When you are finished, you should have a directory structure that looks like this:

Files in bold will be used directly in the walkthrough steps below.

│ InRule For Microsoft Dynamics 365 Integration Framework.zip
│
└───InRuleForMicrosoftDynamicsCRMIntegrationFramework
 │
 ├───DynamicsDeployment
 │ │ Deploy-CrmPackage.ps1
 │ │ ...(many other supporting files)
 │ │
 │ ├───PkgFolder
 │ └─ ...(many other supporting files)
 │
 ├───RuleApplications
 │ DynamicsRules.ruleapp
 |
 ├───RuleExecutionAzureService
 │ Register-AzureApp.ps1
 │ InRule.Dynamics.Service.json
 │ InRule.Dynamics.Service.parameters.json
 │ InRule.Crm.WebJob.zip
 |
 ├───RuleExecutionOnPremService
 │ DeployScript.ps1
 │ InRule.Crm.WebService.deploy-readme.txt
 │ InRule.Crm.WebService.SetParameters.xml
 | ...(many other supporting files)
 │
 └───RuleHelperDeployment
 │ InRule.Crm.RuleHelper.dll
 └─ ...(many other supporting files)

https://support.inrule.com/hc/en-us/articles/360058138552-Download-InRule-Software

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 31 of
142

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 32 of
142

Rule Authoring Environment
A Rule Authoring Environment is used to upload a Rule Application to your catalog app service. A Rule
Authoring Environment is a machine or virtual machine where irAuthor has been installed with the irX for
Microsoft Dynamics 365 extension. If you followed the instructions outlined in irX for Microsoft Dynamics
365 Help Documentation, then you should already have a rule-authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to
be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX
for Microsoft Dynamics 365 license for the duration of this process. If you’re a system administrator who
does not intend to perform rule authoring duties after the deployment is up and running, you can either
chose to borrow an environment from someone who will use a rule authoring environment, or you will
want to be sure to deactivate your license when you’re finished with your deployment responsibilities.

Administrative Accounts
Dynamics On-Prem Organization Service URI: You will want to have the root URL of the organization
web service exposed by your Dynamics 365 instance. The server URL is usually in the format of
“http://crm-server:port/organization-name”

Dynamics Service Account Login and Password: You will want to have a username and account
created specifically for use by the InRule for Microsoft Dynamics 365 Framework Web Service.

Administrative Password to use for SQL Server: You should decide what username and password
you want to use for administrative privileges on the SQL Server. This walkthrough will construct a
connection string that will utilize these resources to connect to the catalog.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to
connect to the SQL Server Database. In a more secure environment, a separate SQL User should be
created that only has access to the single database needed by the catalog. It is up to the reader of this
document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and
password you want to use for administrative privileges within Catalog.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the
reader to go through the process of utilizing the Catalog Manager to change these credentials to be more
secure.

InRule License Keys
You will need your InRule irServer license keys. These can be found at
https://support.inrule.com/activations.aspx. You can contact support@InRule.com if you have questions
about where to get your license keys. For guidance on how to activate your keys, reference Appendix K:
License Management.

https://support.inrule.com/activations.aspx
mailto:support@InRule.com

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 33 of
142

4.3 Deploying and Configuring Components

4.3.1 Setting Up an Application Pool in IIS
Before a website can be setup to host the catalog web service, a suitable application pool needs to be
created. Any IIS server will already have a DefaultAppPool that can be used; whether this section is
necessary will depend on your organization’s architecture and requirements.

1: Open IIS Manager

2: Click on Application Pools on the left-hand nav pane

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 34 of
142

3: Click “Add Application Pool” under “Actions” in the right-hand
pane

4: Define a name for the Application Pool and Create
.NET CLR Version and Managed pipeline mode should be left as their default values. Press OK

5: Click on the new App Pool and Select “Advanced Settings” on the
right-hand pane

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 35 of
142

6: Under the “Process Model” header, select the small “…” button
next to the “Identity” property

Here you can select what kind of identity model you want to use for your application pool. You’ll want to
either use the Application Pool Identity or create a custom account.

The Application Pool Identity creates a virtual account with the same name as your new application pool.
All worker processes within this application pool will run under this account

Custom accounts are the best solution if you want to use your Windows credentials to authenticate to the
Catalog web service.

Press “OK” when you have made your selection and are finished.

4.3.2 Setting Up the IIS Site for the Rule Execution Web Service
Next, we’ll need to setup a website in IIS to host the execution web service. This will require a Windows
Server with IIS installed.

1: Open IIS Manager

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 36 of
142

2: Click on sites on the left-hand nav pane

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 37 of
142

3: Click “Add Website” under “Actions” in the right-hand pane

4: Define website information
Define a site name, application pool and host name for the website; these can be configured however
makes sense within your organization.

The physical path needs to be set to the actual Dynamics Rule Execution web service folder. This will
require you having the InRule components downloaded onto the same server you are setting up the
website on

Lastly, select either HTTP or HTTPS, depending on which makes sense for your architecture. If you opt to
use HTTPS, you will be required to select a certificate before you can finalize the site.

Once you’ve populated all the required fields, press OK to finalize and start the website

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 38 of
142

5: Verify your website successfully created

4.3.3 Deploy the Rule Execution Web Service

1: Open your “RuleExecutionOnPremService” folder:
For guidance on how to find this folder, reference the “Required Files” section above. The folder will need
to be copied onto the IIS server you set up your website on in the previous section.

2: Open the InRule.Crm.WebService.SetParameters.xml file in
Notepad or a similar text editor

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 39 of
142

3: Change placeholder parameter values to real values

1 IIS Web Application Name The name of your IIS website as defined in the “Setting up the Catalog Web Service in IIS”
section

2 UseInRuleCatalog Defines if the catalog is being used to store rule apps. Set to true if using the catalog, and false if
using file system

3 CatalogUri The URI for the Catalog Service that will be used

4 CatalogLabel Defines the label text used to by the service to target the specific rule app in the catalog. Labels
are assigned to rule apps in the catalog

5 CatalogUser Username for Catalog Service, default value is ‘admin’.

6 Catalog Password Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

7 CatalogSSO Defines whether to use app pool identity to authenticate to the catalog web service

8 RuleAppDirectory Specifies the directory where rule apps will be stored if using file system instead of the catalog. If
using the catalog, leave as-is.

9 DynamicsCRM-Web.config
Connection String

Provide a Dynamics connection string. Information on connection string formatting can be found
here: https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-
premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

Important: Some customers have reported needing to provide a username in the format
“domain\username” in order to successfully connect using IFD.

4: Save your changes

5: Launch PowerShell as an administrator

6: Navigate to the “RuleExecutionOnPremService” folder

https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 40 of
142

7: Run the “DeployScript.ps1” file

Observe that no errors occur while this script does its work.

It is worth noting that when deploying plugins without isolation in an on-prem environment, Dynamics
requires that the user registering the plugin must be added as a Deployment Administrator from
Deployment Manager. If the registering user lacks the proper permissions, when deploying the package
Dynamics will return an error stating “Assembly must be registered in isolation.”

4.3.4 InRule Solution for Dynamics On-Prem Deployment
At this point, all of the InRule server components are setup. The rule execution service should be listening
for incoming communication from Dynamics. We must now set up Dynamics. To make this process
easier, we will be using PowerShell.

1: Launch PowerShell as an administrator:

2: Navigate to the ‘\Dynamics Deployment’ directory:

3: Execute Deploy-CrmPackage.ps1
For Dynamics On-Prem v9, run Deploy-CrmPackage.ps1 with the added argument: -OnPrem.

5: Provide Dynamics On-Prem Service Credentials
You will need to login for this script to continue, please be sure to check the ‘Display list of available
organizations’ to make sure that you select the correct instance of Dynamics to install to!

Alternatively, the Deploy-CrmPackage.ps1 script also accepts a Dynamics Connection String:

.\Deploy-CrmPackage.ps1 -CrmConnectionString
'AuthType=AD;Url=https://{DYNAMICSURL}.crm.dynamics.com/;Username={DYNAMICSUSERNAME};Password=
{DYNAMICSPASSWORD}'

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 41 of
142

This is a sample connection string; with an on-premises install, there are a wide variety of options that
may be relevant, depending on your architecture. For more information on connection string formats, refer
to Microsoft’s available documentation, found here.

Important: Some customers have reported needing to provide a username in the format
“domain\username” in order to successfully connect using IFD.

2. Important: This deployment can take a long time to complete. In most cases it takes around 20
minutes.

Observe that no errors occur while the script is executing.

6: Configure the InRule Solution in Dynamics
Next, we need to tell the Dynamics Solution that has been deployed where to find the Rule Execution
Service deployed earlier. We will need to have the Rule Execution Service URI ready for this step.

Navigate to the Rules Configuration Page

When the Rule Services Solution is entered for the first time, the Welcome to InRule for Microsoft
Dynamics 365 wizard will appear:

Close the wizard, as it is applicable to Online only.

https://msdn.microsoft.com/en-us/library/mt608573.aspx?f=255&MSPPError=-2147217396

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 42 of
142

At the top of the InRule Solution configuration page, you will see the Service Endpoint Configuration
options for the solution:

All of these settings can be left as their default values for an on-premises installation, as they pertain to
the Online solution only.

Instead of configuring the above, you will need to scroll down all the way to bottom to the “Rule
Configurations” section and select the active Rule Configuration

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 43 of
142

The following popup should appear:

You can configure the naming conventions of this rule configuration as you see fit, but under “Advanced”
on the right-hand side of the page, you will need to set the Service Endpoint URI to the URI of your Rule
Execution Service endpoint

Be sure to click save (the small save button in the bottom-right corner)

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 44 of
142

Now that everything has been configured, to can test the configuration by click the test button. This test
configuration tests these three things:

1. Execution Service Connection. Test sends a request to the execution service that was deployed
and configured to make sure that it is setup correctly.

2. Execution Service to Dynamics Connection. Test makes a request from the execution service to
make sure that it can make a request back to Dynamics with the connection information
configured on the App Service.

3. Rule Catalog Connection. Test makes a request to the Rule Catalog with the connection
information configured on the App Service.

If all the tests succeed, the system has been configured correctly. If any of the tests fail, check the
configurations for the subject under test.

7: Verify a successful deployment!
A ‘Run Rules’ button will now exist on the edit form of all Dynamics entities. The way this button behaves
will depend on other settings that have been configured under the Rule Configuration section; this
document assumes the default configuration behavior. To understand what settings are available and
what they mean, please see Appendix E: Methods for Executing Rules from Dynamics 365 and Power
Platform of this document.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 45 of
142

Open up an Account and execute ‘Run Rules’. The default deployment is configured to run a Rule App
from the catalog named DynamicsRules, which is what we uploaded to the catalog in the Verify Catalog
stage. If everything has been set up correctly, you should see the “Rule Execution Completed” message
and the description of the account will be updated to provide the date and time.

It is worth noting that the On-Prem plugin will be deployed outside of Sandbox mode. To read more on
why this is necessary and the resulting implications, reference Appendix M: Known Issues, Limitations
and Troubleshooting.

8: Getting Users Ready
While the parties responsible for deploying out InRule can likely leverage the Run Rules button without
issue as they’re likely to be system administrators, if your organization intends to empower non-admin
users to be able to leverage the Run Rules button, they’ll encounter permission issues. This is due to rule
execution requiring access to various Dynamics configuration entities that normal users don’t generally
have permissions to touch.

To circumvent this, the InRule Solution for Dynamics ships with a pre-configured role called the “InRule
Rule Executor,” which contains the bare minimum permission set necessary for users to be able to make
use of the Run Rules button. You’ll need to assign any users in your organization to this role if the intent
is to empower them to run rules through the Dynamics UI.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 46 of
142

Appendix A: Additional Resources

Having trouble? Relax! InRule offers many additional resources to help you get InRule correctly
integrated with Microsoft Dynamics 365.

InRule’s Support Website

InRule’s support website can be found at http://support.inrule.com. If you do not already have a login for
our support site, the client administrator at your company has the ability to create an account for you. If
you are unsure of who your client administrator is, please email support@inrule.com.

InRule’s Support Team

The support team at InRule is available to help with any product support needs, troubleshooting
suspected product bugs, resolving any licensing issues, and free tele-hugs.

The best way to reach Support is through a detailed email sent to support@inrule.com.

You can also reach our support team by calling +1 (312) 648-1800.

InRule’s ROAD Team

ROAD Services agreements can be used to engage with ROAD, InRule’s professional services team.

ROAD can provide your organization with specialized consulting and tailored Architecture and Authoring
Guidance.

ROAD can assist with less common installation requirements, such as deployment to third party cloud
providers or integration with custom software.

ROAD can be contacted by emailing ROADServices@InRule.com

http://support.inrule.com/
mailto:support@inrule.com
mailto:support@inrule.com
mailto:ROADServices@InRule.com

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 47 of
142

Appendix B: Anatomy of a Request for Execution of Rules Diagram

The below diagram helps to give a top-level understanding of how InRule is integrated with Microsoft
Dynamics 365 (Online). Please note this this diagram is a simplification that does not cover topics like
caching, iterations, and multiple environments. It serves to show how the request moves through different
Azure resources.

1. A Dynamics 365 Event based on a configured step fires, such as ADD, UPDATE, DELETE, or CUSTOM. This generates a call
to the Relay, which is setup to relay requests to the connected Rule Execution App Service.

2. The Relay receives the request and relays it to the Rule Execution App Service, which has attached itself to the Relay as a
relay listener. For On-Premises, the rule execution service interacts directly with Dynamics.

3. The Rule Execution App Service makes a request to the Catalog Service, asking for a copy of the requested Rule App.

4. The Catalog Service Queries its SQL Server based database for a copy of the requested Rule App.

5. The SQL Server responds with the Rule App.

6. The catalog service responds to the Rule Execution App Service with the Rule App.

7. The Rule App executes inside the Rule Execution App Service.

8. Optionally, the Rule App has an opportunity to query Dynamics 365 for additional data needed to execute rules.

9. The Rule App completed execution

10. The Rule Execution App Service responds through the Azure Relay

11. The Azure Relay relays the response to Dynamics 365, where the receiving plugin synchronizes changes.

Microsoft Dynamics 365 (Online)

Microsoft Azure Service Bus

Rule Execution Azure App Service

Catalog Service (Azure App Service)

SQL Server & Database [Microsoft Azure SQL Server]

RuleApp

Step 1: A CRM Event, based on a configured step fires
Such as ADD, Update, Delete, or Custom

A call goes out to the service bus

Step 11: Service Bus relay response
containing any changes to Dynamics 365

Step 2: The Service Bus communicates
to the Rule Execution App Service

Step 3: The Rule Execution App Service requests
to download the RuleApp from the Catalog Service

Step 4: Catalog Service queries database for RuleApp Step 5: SQL Server responds with RuleApp
to catalog service

Step 6: The catalog service responds to the
Rule Execution App Service with

the RuleApp

Step 10: Rule Execution App Service
responds through service bus relay

Step 9:
Rule App completes

Step 7:
App Service executes

the RuleApp

Step 8: (optional) RuleApp utilizes RuleHelper to query
additional data from Dynamics 365 Instance

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 48 of
142

Appendix C: General Authoring and Integration Concepts

Runtime Mapping across Nested Relationships
Much like Dynamics 365, the InRule rule engine offers strong support for hierarchical and relational data.
Within a given Rule Application, data can be considered across parent-child relationships within a single
rule request. These relationships can take the form of Collections (1 - * relationships) or 1 – 1
relationships.

• Note: When N:N relationships are imported into InRule, they behave as 1:N Collection
relationships within the Rule Application.

In addition to the abilities of both products to handle relational data, both products also offer the ability to
declaratively configure “Entities” and “Fields”. Both products also allow for different strongly-typed Entities
and Fields to be accessed with loosely-typed SDK interfaces. Because of these inherent similarities and
flexible interfaces, it is possible to build a reusable mapping component that can convert any given graph
of loosely typed Dynamics Entities to InRule Entities, and vice versa.

Controlling irVerify Behavior with Load, Save and Inactive Record
Settings
When working with a tree composed of many related Dynamics Entities, it is often useful to have explicit
control over which relationships are either automatically loaded or automatically considered in change
detection for persistence. If a relationship is skipped during the initial load routines, then it is available to
be conditionally populated later using rules.

In the irX rule authoring ribbon, there are three buttons that give the rule author the control to denote if a
relationship should be automatically loaded, saved or have inactive records excluded.

• Note: Automatic loading and saving is enabled by default for all relationships that are
imported from Dynamics. The rule author can opt-out of these automatic behaviors by
unselecting “Auto Load” or “Auto Save”. When these buttons are selected, metadata
attributes are written into the Rule Application for the given relationship. These metadata
attributes are used by the irVerify data loader when recursively loading data or detecting
changes for persistence.

• Important: If loading or saving is disabled for a given relationship, then it is also disabled for
all Entities that are children of that relationship.

Since Microsoft Dynamics 365 uses the "inactive" status to do a soft delete of records, it is possible to
include both active and inactive records when loading a Collection or relationship. You can use the
"Exclude Inactive" button to exclude inactive records, returning only active records. To ensure that this
feature works correctly, the child Entity of the Collection or relationship should map the Dynamics 365
Status field.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 49 of
142

Polymorphic Lookups
Usually, when setting up an entity relationship in Dynamics, the relationship can only apply to one entity
type. But, polymorphic lookups can refer to any of the entity types that are set up for the relationship. For
instance, a 'Payment' entity could be linked to many different kinds of custom entities that represent items
that can be bought in a company.

Just like Dynamics, InRule entity relationships usually point to only one type of entity. When importing
polymorphic lookups in the irX schema manager, a special linking entity is created automatically in the
rule app. This linking entity has a type field that shows which entity type is being used, and one linking
field for each possible entity type in the relationship. These values will be populated at runtime and allow
writing rules to say if Entity Type = Course, then… or if Entity Type = Book, then…

In the below example, the AffectedBy field on Contact is a polymorphic field that can be of type
Opportunity or Quote. When importing the AffectedBy field, it will generate an associated entity called
ContactAffectedBy that is used as a container to represent the variable relationship to Opportunity or
Quote. This pattern will be used for each polymorphic entity imported in the schema and will allow for the
reading and setting of associated entity references.

Appendix D: Accessing Dynamics 365 Directly from Rule Helper

In the default Rule Execution setup, all relationships between Entity types must be established before
these entities can be used by the rule app. This behavior is intuitive, but it is not ideal for all business
problems. The InRule Integration framework provides a ‘Rule Helper’ assembly that can be used directly
in a rule app and allows rules to load, compare, and assign data that is not related in Dynamics before
rules are executed. The Integrating the Rule Helper Component section of this appendix provides more
information for setting up a Rule App to use the Rule Helper.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 50 of
142

When to use the Query from Rules Approach
The query from rules approach adds value for the following business problems:

• The rules need to reference “lookup” information that may be in a list or set of Entities that are not
specifically related to the current Entity hierarchy

• The purpose of rules is to create new relationships between Entity instances that already exist in
Dynamics

• The rules need to compare many combinations of unrelated Dynamics Entities and produce
results about best possible matches or scores

• A custom filter is required when loading data for 1:N or N:N relationships

• The rules need to delete an entity from Dynamics instead of only removing the relationship

• Important: Deleting an entity with relationships configured to cascade delete will also delete
those related entities. Carefully review your entity schema and relationships before using the
delete functionality in the Rule Helper

Working with Disconnected Fields when Loading and Saving Data
One of the most important integration concepts when loading Dynamics data from rules is the notion of
“Disconnected” Fields and Fields that have “Auto Load” and “Auto Save” disabled.

irX allows the rule author to explicitly control the “Auto Load” and “Auto Save” behaviors of Fields that are
connected to Dynamics.

The example below shows a Collection named CandidateProducts. Since the Collection is not marked
with a blue triangle, it is not considered to be attached to Dynamics.

• Important: Although Entity Fields and Collections may be “Disconnected” from Dynamics,
the types contained by the Collections can be set to types that were imported from Dynamics.

• Note: If a Field is added to the schema using irAuthor, then it will be disconnected from
Dynamics. If a Field has been imported from Dynamics using irX, then it can be disconnected
from Dynamics by clicking the “Disconnect Item” button in the irX ribbon.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 51 of
142

• Important: Two additional settings appear in the irX ribbon that offer additional control over
automatic loading and saving behaviors for Fields that remain connected to Dynamics. In the
example below, both buttons are “lit up”, which denotes that the settings are enabled. By
default, automatic loading and saving is enabled for all Fields that are connected to
Dynamics.

Integrating the Rule Helper Component
InRule provides a sample rule application (DynamicsRules) that is already configured for RuleHelper
usage. You can simply edit this rule app, or, if you wish to integrate RuleHelper into an existing rule app,
you can copy both the UDF Library “RuleHelper” and End Point ‘CrmHelper” from the DynamicsRules rule
to another rule application.

If you wish to manually create the UDF Library and End Point in irAuthor, follow the steps below.

1. Create a new rule app using the irX add-in for irAuthor.

2. Create a new “.NET Assembly Function Library” end point and bind the end point to the
InRule.Crm.RuleHelper.dll assembly. Select the DynamicsDriver class and then select the
methods that should be callable from rules. Edit the name of the end point to “CrmLib” or similar.
Select the methods from the DynamicsDriver that are needed for the Rule Application. You do not
need to select all the methods—only import the methods that will actually get used by rules.
Additional methods can always be imported later be revisiting the endpoint screen and reloading
the assembly.

https://inruledynamicsappsource.blob.core.windows.net/documents/DynamicsRules.ruleappx

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 52 of
142

3. Add a User Defined Function library and set the name to “CrmHelpers” or similar. This library will

contain functions that the rules will call to query Dynamics.

4. Add a User Defined Function to the new library. The example below shows a UDF that will be
used to execute the QueryCollection method on the DynamicsDriver. Fill out the UDF with script
that will call a method on the DynamicsDriver.

• Note: The methods on the DynamicsDriver are designed to be reused for more than one
Entity type, Field, or set of Fields. The name of the Target Field or Collection should be
supplied as a string. When querying a Collection of results, an optional “where” clause can be
provided that will be forwarded to calls against the CRM SDK. In addition, an “order by”
clause can be provided to return sorted results.

• Important: This integration pattern relies on the “Context” object that is available from
irScript. The Context object returns information based on the context under which a given
UDF is executed. For example, when executing an Entity Rule Set, the Context.Entity returns
a reference to the Entity against which the current Rule Set is executing. The Context and its
child properties are passed to the DynamicsDriver so it has enough information to form calls
to Dynamics 365 and map responses back to the InRule Rule Session.

• Important: When using Context with a Decision, Context.Entity cannot be used by
Decisions. Instead, the UDF will need to pass the entity in as a parameter.

• Note: The Context.FunctionLibraries property can be used to create calls to the .NET
assembly library methods, such as the methods imported in Step 5 above. The following
script example demonstrates how to use the Context object in irScript to form a call to a static
.NET method:

Context.FunctionLibraries.DynamicsDriver.QueryCollection(Context,
Context.Entity, collectionName, filter, orderBy, connectionString);

• Important: The “connectionString” argument is optional due to the fact that the overloading

of the methods on the DynamicsDriver is not passed in the by the rule engine or irX. It will
then be looked up from either the .NET config file based on the given environment. As a rule

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 53 of
142

of thumb, it is generally not recommended to override the connection string in this manner as
it can perpetuate difficult debugging scenarios and inadvertent dependencies.

• Important: Below is a sample connection string that needs to be defined in the

irAuthor.exe.config XML for native irVerify to call the RuleHelper. For information on
Dynamics connection string formatting, refer to https://docs.microsoft.com/en-
us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-
tooling-connect.

5. Rules can now be authored to execute methods on the DynamicsDriver. These methods can be
used to load Collections, single Entities, or single Fields from Dynamics based on conditional
logic within rules.

• Note: The example above includes a call to the default business language templates for a

method on the DynamicsDriver. The InRule vocabulary features can be used to modify these
templates to be more user-friendly for business users.

• Important: The Target Collection in the sample rule is called “FamilyMembers”. This is a
Field that either does not exist in Dynamics (only for use in rules), or has been imported and
then “disconnected” from Dynamics using the “Disconnect Field” button, or has “Auto Load”
disabled.

• Note: Please see the following sections for more details on the creating the “filter” clauses
similar to the one used this example.

Filtering Queries using the Where Clause Builder
When loading data from Dynamics during rule execution, it is critical that the rule author is able to author
logic to specify which Entity data to load. Using the RuleHelper, this is accomplished by allowing the rule
author to pass in a “filter” or “where” clause into the calls against the DynamicsDriver class.

During execution of the DynamicsDriver, the filter clause is parsed into an Abstract Syntax Tree (AST)
and then translated into a LINQ expression tree, so it can be consumed using the CRM SDK. The filter
clause is based on the InRule function syntax format.

• Note: The InRule function syntax format is used for the following reasons:

o The syntax rule format is consistent with the rule authoring experience used
throughout irAuthor

<connectionStrings>
<add name="DynamicsCRM"
connectionString="AuthType=OAuth;Username=jsmith@contoso.onmicrosoft.com;
Password=passcode;Url=https://contoso.crm.dynamics.com AppId=51f81489-12ee-4a9e-aaae-
a2591f45987d;RedirectUri=app://58145B91-0C36-4500-8554-080854F2AC97;LoginPrompt=Auto "/>

</connectionStrings>

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 54 of
142

o This format can make good use of the InRule AST parser that is included as part of
irSDK

The diagram below depicts the logical flow of steps used by the DynamicsDriver and WhereClause
builder classes to query data from rules.

The diagram and notes below contain some additional information about forming the filter clause in a rule:

• All the Field names that are used are the Dynamics friendly names that are used in the Rule
Application. These names are mapped back to the Dynamics Field names in the parser.

• String literals should be wrapped in single quotes, date literals should be wrapped in pound signs.

• Simple operators are supported to compare values, such as =, !=, >, < (ex. Age > 21, Name !=
‘Ralph’).

• Multiple conditions can be chained together using ‘and’ and ‘or’ keywords.

• The expression tree builder will attempt to call a given .NET framework function if it appears in
the expression.

o The .NET call must be expressed as a function, with the first argument being the name of
the Field to operate on. The remainder of the arguments will be passed through in order
to the .NET function call when it is formed.

o Examples: StartsWith(FirstName, ‘A’) EndsWith(LastName, ‘ez’) Contains(LastName,
‘Smith’)

o Any non-static methods on the .NET String class are candidates to be called as functions
using the parser syntax above. However, InRule has only tested the StartsWith,
EndsWith, and Contains methods on the String class.

Dynamics CRM
Database

Dynamics
Organization

Service

Rule Engine

Initiate queries
with optional

filters

Continue
Running
Rules...

Execute LINQ
query using

expression tree
with

CRM xRM SDK

Running
Rules... Parse Filter

(Where) Clause to
AST using

InRule.Repository

Translate AST
to .NET

expression tree

Populate RuleSession
with InRule Entities
using EntityMapper

Simple type values as
literals or passed from

field values
Condition operators

(and/or)

CRM friendly
names

.NET String functions,
with field to operate on

as first argument

Comparison operators
(=, >, !=, etc.)

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 55 of
142

• The following keywords and operators are supported by the InRule AST parser and expression
tree translation code: =, <>, !=, +, -, *, /, or, and, xor, >, >=, <, <=, ^, %

The filter expression also supports querying against related entities, simply by appending the related
entity name in front of the relevant query field. Querying against related entities requires that all entities
queried in the relationship chain be imported into irAuthor. The queried fields on each of the queried
entities do not necessarily need to be imported, but if they are not, the entire Dynamics schema field
name must be used, rather than their irAuthor aliases.

In this example, we are populating a collection by querying the Contact entity, which is the “parent” entity
here. We are then applying a filter statement to return only contacts with related Cases that have
Descriptions starting with “A.” Cases in this example is the “child” entity. Notice how the hierarchy of the
related entity down to field is denoted. If you wanted to drill down another layer to a “grandchild” entity (in
this example, an entity related to Case), it would be accomplished by simply continuing the chain from
entity to field. Below is an example of a “grandchild” case:

This example would return Accounts that have related Contacts with Cases with Descriptions starting with
“A.” The filter expression can support querying in this manner up to 15 “layers” deep, including the initially
queried entity. Put another way, you can have up to 15 different related entities in a single filter
expression.
The filter expression supports querying against multiple properties from different related entities. In the
below example, we are querying for Contacts with Cases that have Descriptions starting with “A” and also
have Leads with Names starting with “A.”

Ordering Query Results with the OrderByClauseBuilder
The DynamicsDriver class also supports the ability to control the order of the results returned from
Dynamics by passing in an optional “order by” clause. The order by clause can accept only a single Field

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 56 of
142

name, which should be the name of the Field in the Rule Application. The results are always sorted in
ascending order, unless the Field name is followed by the “desc” syntax. Please see the examples below:

To sort ascending, pass the Field name to use in the sort:

To sort descending, pass the Field name to use in the sort followed by the “desc” keyword:

• Note: The “order by” clauses generally contain much simpler expressions than “where”
clauses. However, InRule syntax rules format is used for the order by clause to be consistent
with the where clause approach.

• Important: The parsing and translation of the order by clause is handled in the Rule Helper

contained in the

Methods Available in the Rule Helper
The following table lists the public, static methods that are available in the DynamicsDriver

Method Name Description
LoadMappedChildCollection Populates a child Entity Collection based on an existing 1:N

relationship in Dynamics. The Collection is populated based on
existing parent-child relationship data in Dynamics.

LoadMappedChildEntity Populates a child Entity Field based on an existing 1:1 relationship in
Dynamics. The Field is populated based on existing parent-child
relationship data in Dynamics.

QueryCollection Populates an Entity Collection with a set of a given Entity type. An
optional filter clause (where clause) can be used to define selection
criteria for the Entity set. The Collection does not need to correspond
to a 1:N relationship in Dynamics.

QueryEntity Populates an Entity Field or variable based on a query to Dynamics.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. The Field does not need to
correspond to a 1:1 relationship in Dynamics. If more than one Entity
is returned from the query to Dynamics, then the first Entity in the set
is used.

QueryField Populates a primitive Field or variable based on a query to
Dynamics. An optional filter clause (where clause) can be used to
define selection criteria for the Entity. If more than one Entity is
returned from the query to Dynamics, then the Field value from the
first Entity in the matching set is used.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 57 of
142

Method Name Description
QueryNtoNCollection Loads entities across an N:N Collection that has been defined in

Dynamics. The relationship name and parent and child ID Fields
must be provided.

LoadMappedNtoNCollection Similar to QueryNtoNCollection, except that the relationship must be
imported into the Rule Application.

DeleteEntity Deletes an entity referenced by a lookup field. Unlike other rule
helper methods, the deletion will not be performed immediately, but
will be marked for deletion and then processed with other changes
returned to Dynamics from the execution service

DeleteEntityFromCollection Similar to DeleteEntity, but takes a reference to a collection and
index instead of a lookup field.

GetUserLocalTimeFromUtc Converts a Dynamics UTC time value into the local time for a given
user. This method makes use of the
LocalTimeFromUtcTimeRequest that is part of the CRM SDK.

Additional Flags Available to Control Loading and Caching Behaviors
in the Rule Helper
During a given query operation, there may be advanced use cases that require specific control over
loading or reloading data from Dynamics 365. The optional overloads of the QueryEntity and
QueryCollection methods expose a set of optional Boolean flags that help control caching and depth of
loading behaviors. The table below list these parameters:

Parameter Name Description
loadChildren Denotes if the execution service should recurse the Entity graph and

load all children. If false, no children are loaded below the Collection
Members that are loaded. The default value is true.

useCaching Denotes if previously loaded Dynamics Entities should be reused from
the InRule entity cache, or if new entity instances should be created. If
false, the original entity data will be requested from Dynamics, and a
copy of the Entity is created. The Instance ID is not set to the GUID of
the Dynamics Entity, which will also prevent changes to this entity from
being written back to Dynamics. This functionality can, for example, be
used to load the original values for an entity persisted in Dynamics
when rules are run on update and compare the original and updated
values. The default value is true.

overwriteIfLoaded Denotes if a previously loaded Dynamics Entity should be repopulated
with the latest values in Dynamics. This behavior will overwrite Field
values stored in the cache. The default value is false.

cacheInAppDomain Denotes if the result of the query should be saved in the persistent
AppDomain cache. The difference between this parameter and the
‘useCaching’ parameter above is that enabling this parameter will save
the query result in a cache that will persist across multiple different rule
executions, where the above parameter only enables caching within the
scope of a single rule execution. For more information, refer to
Configuring the AppDomain Cache

Note: The default values should always be used for the cache settings unless there is a specific
use case that requires different behaviors.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 58 of
142

Appendix E: Methods for Executing Rules from Dynamics 365 and
Power Platform

InRule supports several methods for the execution of rules from both Dynamics 365 and Power Platform.
As Microsoft has evolved its singular app platform vision across Dynamics 365, Power Apps, and Power
Automate, many of the common integration techniques employed for one or the other, can now be
extended to all. This is made possible by Dataverse which is the backbone data integration service
across Dynamics 365 and Power Platform. InRule for Dynamics 365 is designed to work directly with
Dataverse entities for event handling, data loading/saving, and schema mapping functions.

The diagram below depicts the high-level integration flow for InRule with Dynamics 365, Power Apps, and
Power Automate in an Azure Cloud Environment.

The following sections provide a detailed overview of the methods for executing rules and how they apply
to various aspects of Dynamics 365 and Power Platform. While the listed methods provide proven
coverage across most functional needs, your implementation needs may vary, so this guide provides
more technical details to help you create the right solution.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 59 of
142

Method of Rule
Execution

Dynamics
365

Power Platform

Power Apps

Power Automate

Model-Driven
Apps

Canvas
Apps

Power App
Portal

Dataverse Events
(Plugin events)

● ● ● ● ●

Rules Engine Action
(InRule Plugin)

● ● ◑ ◑ ●

Run Rules Button

● ●

Workflow Activity

● ●

Form Events

● ●

JavaScript

● ●

One thing that is consistent across all options is that each support mapping entity data to be used in
execution of rules. InRule for Dynamics supports both explicit and auto rule sets, in addition to decisions.
All these options can be used together, and each have factors to consider when choosing which to use.
Some of the key considerations are outlined below.

User Control

If users need to be able to execute rules on demand, the Run Rules button and Workflow activity are the
easiest choice to work with. The Run Rules button is displayed on the command bar of every entity, so it
can easily be clicked at any time by end users to get feedback from rules. Using the custom workflow
activity also allows rules to be run on demand, potentially as part of a more complex process that contain
a rules processing step.

Rules can be invoked indirectly by the user by tying rule execution to events within Dynamics. The typical
way to accomplish this is by configuring the InRule plugin to run on entity Create or Update events. Form
events like field change or form save can also be used to trigger rule execution. For more advanced form
scenarios, like integrating with another command bar button, custom JavaScript can also be used. The
included Custom Action can even be used to respond to user events outside Dynamics, by providing a
web API endpoint that can be accessed by external systems.

Display in the User Interface

If you want to display information to the end user based on rule execution, the run rules button is the
easiest method. When executing rules from the button, any Errors, Warnings and Informational
notifications will be shown in the notification pane, along with any Validations. Executing rules via the

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 60 of
142

included form events helper function or calling the executeRules function from custom JavaScript will also
display the same information.

Using the custom workflow activity itself will not display any data in the UI, but the workflow activity does
provide output variables with the results of rule execution that can be displayed in a dialog or output via
some other method if desired.

Plugin events will not typically display any info in the UI, but any errors or validations will show up in the
plugin error pop-up if the plugin is set to run synchronously.

Execution Against Dirty Data

If you need to execute rules against dirty form data, or any entity state other than what is saved to the
database, you can enable the ‘Use Dirty Entity Image’ setting as described in An Explanation of the
InRule Custom Action Options. If this option is enabled when running rules from the ‘Run Rules’ button,
the current form values will be collected and sent to the rules. This can be used to perform form value
validation, or to provide insight into a what-if scenario prior to changes being saved. This same config
value also governs the behavior for form events or any custom JavaScript that calls executeRules.

The custom workflow activity and plugin events do not provide the ability to specify a dirty entity image.
They can only run against the data provided by the plugin pipeline. However, in the case of a plugin
entity update event the entity change image is automatically included. In addition, the custom action
provides a dirtyEntityImage field that accepts a json-serialized entity image.

Responding to API Events

If you want to always execute rules when an entity changes, no matter how those events are initiated, you
need to register the included plugin to an event. Running rules based on plugin events means that not
only will rules be executing when creating or saving entities from within the Dynamics 365 Entity Forms
UI, but they are also executed when entities are changed through API calls.

API calls are frequently consumed by 3rd party add-on user interfaces, Extract-Transform-Load (ETL)
synchronization with other software products, and by custom software solutions as an integration point
with Dynamics 365. By utilizing this option, an implementer can take advantage of rule execution for
needs beyond the Dynamics 365 Entity Forms UI.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 61 of
142

4.4 Dataverse Events

The InRule Solution contains a plugin that can act as a handler for events fired by Dataverse. By
registering new steps to Create or Update events against Dataverse Entities, rules execute against the
entities that are associated with an event as it occurs.

Configuring Plugin Events

You can register plugin steps using the InRule Rules Configuration page included with the InRule
Solution. Alternatively, for advanced scenarios, you may use the Plugin Registration Tool from the
Microsoft Dynamics 365 Software Development Kit (SDK), but this is typically only needed for special
circumstances where greater plugin management is warranted.

There are two steps required to register a plugin event:

1. Create a Rule Configuration Record (or use the Default Rule Configuration) - create or update
a Rule Configuration record according to the steps in Updating InRule Rules Configuration
Records

2. Associate the configuration record to the create or update message of an entity by following
the steps in Associating an InRule Configuration record to an Entity

Pre-Operation vs Post-Operation for plugin step registration. Plugin step registrations can be configured
to run on either Pre-Operation or Post-Operation. By default, the InRule configuration page will register all
plugin steps to Post-Operation. In some scenarios Pre-Operation may be preferred. For example, if there
are both create and update plugin steps registered to the same entity, using Post-Operation for create
can result in extraneous update messages being fired when running rules on create. The create plugin
step registration can be changed to Pre-Operation using the Microsoft Plugin Registration Tool. There are
a few limitations to Pre-Operation plugin step registrations. Since Pre-Operation takes place before the
entity is saved to Dataverse, new entity associations and status code checking will not work.

Validation and Cancellation

When running rules from a plugin, you may want to cancel any changes that have been made to the
entity as well as any changes made from rules. One way to accomplish this is by returning a validation
error from the rules. If the plugin detects any validation errors, it will skip saving any changes made by the
rules and stop the plugin pipeline to prevent any further changes. If an end user is saving or creating an
entity and this happens, they will see the following error:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 62 of
142

For a better validation user experience, you can also run rules on the ‘OnSave’ event of a form, as
described in the Form Events section.

Plugin Registration Tool (Advanced Scenarios Only)

Important: This tool registers all steps to Post Operation stage of execution. If an alternate
stage is desired the registration will need to be modified with the Microsoft Plugin Registration tool linked
and pictured below. Other custom configuration scenarios may include changing the Execution Mode to
’Asynchronous’ or adjusting the Execution Order.

You will also need to use the registration tool if you want to register the plugin to events other than
‘Create’ or ‘Update’. Link to download SDK tools: https://docs.microsoft.com/en-
us/dynamics365/customer-engagement/developer/download-tools-nuget

The unsecure configuration field contains the GUID identifier for the associated Rule Configuration. If
there are additional inrule_RulesEngineAction steps they will all be stored in this configuration field on the
InRule Custom Action Step as entity name, ID pairs.

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 63 of
142

4.5 Rules Engine Action

The InRule Solution contains a plugin that has a preregistered step called the RulesEngineAction. The
InRule Custom Action allows developers to trigger the execution of rules by calling into the Dataverse
API. Actions provide an easy way to trigger functionality in Dynamics and can be invoked using multiple
different methods. Registering an action creates a corresponding web API endpoint. This endpoint can be
used by external code, or in the case of the ‘Run Rules’ button, called from JavaScript. Actions can also
be called from workflows directly with the workflow designer, or through a custom workflow activity.

To call this endpoint, you will need to make a POST request to the following url:
https://[your_org_url]/api/data/v9.0/inrule_RulesEngineAction. The body of the request should contain a
JSON object string with the following fields. ‘ruleSetName’ can be either a rule set or decision name.
Label and ruleParameters are optional. If ‘label’ is not supplied, the default value configured on the
execution service will be used. To pass parameters to the rule set or decision, use ruleParameters and
provide a JSON string in the following format: {"parameter1Name":"parameter1Value",
"parameter2Name", "parameter2Value"}

• entityId
• entityTypeName
• ruleAppName
• ruleSetName
• persistChanges
• label
• ruleParameters

The custom action will return a JSON response with the following schema. This schema can be supplied
to JSON parsing steps in Power Automate flows to help with processing rule execution results

{ "type": "object", "properties":{
 "NotificationResponse": { "type": "object", "properties": {
 "Notifications": { "type": "array", "items": { "type": "object", "properties": {
 "Type": { "type": "integer" },

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 64 of
142

 "Message": { "type": "string" } },
 "required": ["Type", "Message"] } } } },
 "ValidationResponse": { "type": "object", "properties": {
 "Validations": { "type": "array", "items": { "type": "object", "properties": {
 "FieldName": { "type": "string" },
 "FieldDisplayName": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["FieldName", "FieldDisplayName", "Message"] } } } },
 "ContextResponse": { "type": "object", "properties": {
 "PropertyBag": { "type": "array", "items": { "type": "object", "properties": {
 "key": { "type": "string" },
 "value": { "type": "string" } },
 "required": ["key", "value"] } } } },
 "ErrorResponse": { "type": "object", "properties": {
 "Errors": { "type": "array", "items": { "type": "object", "properties": {
 "Source": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["Source", "Message"] } } } } }
}

4.6 Run Rules Button

The ‘Run Rules’ button makes it easy for the end user to choose when to execute rules. Executing rules
via the Run Rules button allows for the display of Informational, Warning, and Error notification types,
which provide rich feedback to end users. Multiple rule sets can also be configured for interactive
selection giving users the option of choosing which rules to run for a given record or dataset. The InRule
Solution places this button on the ribbon of each Dynamics 365 or model-driven app Entity Form, as
shown here:

When the Run Rules button is pressed, the included JavaScript will execute rules against the current
entity based on the settings defined in the InRule Solution – Rules Configuration Form, described in
Appendix F: Rules Configuration and Settings. Once you have set up the basic InRule configuration and
validated all functionality, you can hide this button from all forms where it is not used to prevent confusion
for end users. To do this, follow the steps in Disabling the InRule Run Rules Button to hide the button in
the default configuration, and then create new configurations to show the button only on the entities that
have associated rules.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 65 of
142

Using the Rule Set Dropdown

Out-of-the-box, the Run Rules button is scoped to only run the default rule set that is specified in the
configuration file. However, you also have the option to add additional rule set configurations for selection
by the end user. When these are added, the Run Rules Button will display a dropdown menu to allow the
end user to select the rule set or decision. To enable this functionality, follow the steps in Configuring the
Run Rules Button for an Entity Form

Running Rules with parameters

If you need to collect information from end users that is not on an entity form, you can configure rule set
parameters to get this information at runtime. When parameters are configured for a selected rule set or
decision, the end user will see the following dialog to allow them to input the parameters:

Users can optionally provide values for each parameter by setting the ‘Value’ field using the editable grid.
Once they have filled out the parameters, they can click the ‘Ok’ command button, and rule execution will
continue as usual. If the user clicks the ‘Cancel’ button or closes out of the dialog for any reason, rule

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 66 of
142

execution will also be canceled. This functionality is primarily intended for use with the ‘Run Rules’ button,
but these parameters can also be passed in directly to the Rules Engine Action, which can be called from
flows, JavaScript or other external callers.

Using the Run Rules button from Entity View

The Run Rules button can also be used from an entity view page. This allows for running rules against
multiple entities at once. To do so, simply navigate to the entity view for the entity type you wish to run
rules against and select the entities against which you want to run rules.

Once at least one entity is selected, a Run Rules button will appear in the Ribbon. This Run Rules button
functions identically to the Run Rules button on an entity page and provides a similar dropdown menu for
multiple rule sets or decisions associated with an individual rule configuration.

Running rules in this manner will use the rule configuration associated to the entity type that you are
running against.
Running rules in this manner will use the rule configuration associated to the entity type that you are
running against.

A key limitation to be aware of while running rules via this approach is that entity view pages are unable
to display any sort of banner notifications or rule execution status. Should you want to view any
notifications associated with a rule execution from a view page, refer to the plugin trace log.

Additionally, the entity view page run rules button will only execute rules against entities loaded on the
current page, up to a maximum of 100 entities.

4.7 Workflow Activity

If you need to run rules from a workflow, the solution provides a custom workflow activity that invokes the
included custom action. The custom workflow activity passes in the entity ID and type automatically for

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 67 of
142

you and provides the rest of the custom action settings as input fields on the activity. The activity also
returns the details of the response as individual fields, instead of raw json. These are the fields returned:

• Informational Notifications
• Warning Notifications
• Error Notifications
• Validations
• Errors

When using the custom workflow activity, you can select the option to throw an exception on failure. If you
choose to throw an exception on failure, the workflow will end immediately if the custom action fails, and
the user will see an error message if they are running the workflow synchronously. If you want to
implement conditional logic to handle failures, you can disable this option and check for the existence of
data in the Error return variable to determine if the activity failed.

If you don’t want to use the default configuration for a particular entity, create a new InRule Configuration
record according to Updating InRule Rules Configuration Records and then associate it with that entity by
following Associating an InRule Configuration record to an Entity.

Additionally, if you want to run rules against multiple entities, you can leverage custom workflows from an
entity view page and run the workflow against selected entities. This functions similarly to the entity view
page Run Rules button, but the notable difference is that custom workflows allow for the execution of
custom logic on the selected entities before the execution of rules.

 Important: Before you can use the custom workflow activity, you will need to update the max
plugin depth setting for the custom action step to be at least 2, instead of the default value of 1.

This is because causing a plugin to be run from a workflow adds 1 to the current plugin depth. For more
information on plugin depth, please refer to Changing the Max Plugin Depth

4.8 Form Events

While the ‘Run Rules’ button provides an easy way to run rules on demand, you can also run rules
automatically on form events, such as ‘OnSave’. To help with this, the invokeCustomAction.js web
resource provides a helper function called ‘executeRulesOnEvent’ that you can easily register to an
event.

When this function is registered to the ‘OnSave’ event of a form, it will trigger the rules configured for the
entity or event (see specific steps below). Any validation errors returned by the rules will automatically
cancel the save operation and display the messages in the notification pane. Alternatively, if you need to
use validations to prevent saving for updates made from the Dataverse API, you’ll need to configure rules
to run on the ‘Update’ or ‘Create’ event for an entity as described in Dataverse Events.

Important: If you want to use the dirty field values currently on the form, and not the values
already saved to Dataverse when running rules, make sure you set ‘Use Dirty Entity Image’ to true

when setting the InRule Configuration for this entity. You can do this by following the steps in Updating
InRule Rules Configuration Records and Associating an InRule Configuration record to an Entity.

1. Registering a function to a form event requires customizing the entity form. If you want to make
this change in a solution navigate to that solution first. Otherwise, navigate to Settings ->
Customization -> Customize the System

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 68 of
142

2. Navigate to the entity and form you’d like to customize and select it

3. Once the form is open, select ‘Form Properties’ in the ribbon bar, click ‘Add’ under ‘Form
Libraries’, find inrule_invokeCustomAction.js and add it

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 69 of
142

4. Select the desired Control and Event under ‘Form Handlers’ and click ‘Add’. In the window that
pops ups, select ‘inrule_invokeCustomAction.js’ for the Library, and enter
‘inRule.executeRulesOnEvent’ for the Function. Under the ‘Parameters’ section, ensure the ‘Pass
execution context as first parameter’ is checked. If you want to override the default rule set and
rule app configured for the entity, the rule app can be passed in as the first parameter, and the
rule set or decision as the second. Both must be passed for this to work.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 70 of
142

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 71 of
142

5. Click ‘Ok’, ‘Ok’ and then save and publish the form

4.9 JavaScript

While InRule provides the ability to easily run rules on demand with the ‘Run Rules’ button and form
events, you can also write your own JavaScript for more advanced scenarios and consume the functions
provided in the included invokeCustomAction.js resource directly.

Overriding Rule Configuration behavior with user Options and custom JavaScript

The Run Rules ribbon button executes the InRule.executeRules() method without passing in any
parameters. Calling the method in this way will use the configuration defined by the InRule Solution –
Rule Configuration Form. However, if an implementer chooses to call the InRule.executeRules() method

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 72 of
142

from within custom JavaScript code, a userOptions object can be passed in that will override the Rule
Configuration.

The below JavaScript clip demonstrates how to load up a userOptions object with the values, and then
pass those options on to inRule.executeRules(userOptions). ‘ruleSetName’ can be either a rule set or
decision name. To pass parameters to the rule set or decision, use ruleParameters and provide a JSON
string using the format below:

4.10 Power Platform

Over the years Microsoft has extended the functionality available in Dynamics 365 by providing deep
integration into other Microsoft products. Most of these products now fall under the ‘Power Platform’
umbrella, which includes things like Power Apps and Power Automate. These technologies are
underpinned by the Dataverse and the Common Data Model, which is the same technology used to store
and manage entities in Dynamics 365. These are some examples of things you can do with InRule and
Power Platform:

• Power Automate – Use the Dataverse Connector to run rules against an entity as part of a flow,
and use the rule output later in the flow

• Dataverse and Model-driven Apps – Create custom model-driven apps that execute rules using
the Run Rules button and Plugin events, just like in Dynamics 365

• Canvas Apps – Using the integration with Power Automate, execute rules from forms with
entities to display notifications or take other actions based on rule output

• Power App portal – Run rules and display rule output in customer-facing portals (requires
custom code for UI and triggering custom action – contact InRule for more information)

var formContext = executionContext.getFormContext();

var userOptions = {

 persistChanges: true,

 useDirtyEntity: false,

 entityTypeName: formContext.data.entity.getEntityName()

 entityId: formContext.data.entity.getId,

 useEntityPrefix: false,

 showConfirmation: true,

 showStatus: true,

 ruleAppName: "MyRuleApplication",

 ruleSetName: "MyRuleSet",

 ruleSetParameters: '{"parameter1Name":"parameter1Value",
"parameter2Name", "parameter2Value"}'

};

inRule.executeRules(formContext, userOptions);

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 73 of
142

In the following sections, we will describe in more detail how to use InRule from both Power Automate
flows and Canvas apps.

Power Automate

Power Automate is Microsoft’s low-code solution for building workflows and business logic. The primary
way Power Automate flows can interact with Dynamics is through the Dataverse Connector. This
connector lets you interact with entities, as well as other Dataverse-specific functionality, like invoking a
custom action. Using the custom action step, you can call the InRule RulesEngineAction included with the
InRule solution, and pass in all the required information to execute rules against an entity. This will kick
off the same plugin logic that is used by the Run Rules button and entity events within Dynamics and
return the same set of information. If the rules you’ve written handle making all of the changes you need,
you can simply fire the RulesEngineAction and move on, or you can use the rule output later in the flow
for downstream processing. You could, for example, write the notifications returned from rule execution to
an email and send that to a user. The steps below will show you how to set up a flow to execute rules on
an entity.

1. Once you’ve installed InRule for Dynamics 365, go to https://flow.microsoft.com, and make sure
you’ve selected the Dynamics or Dataverse environment containing the InRule solution

2. Create a new flow using whichever trigger is appropriate for your flow, and then add a new
‘Perform an unbound action in selected environment’ action.

https://flow.microsoft.com/

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 74 of
142

3. Select the current environment from the environment dropdown. Next, search for the
‘inrule_RulesEngineAction’ action in the list of available actions.

4. Once you select the action, the step should automatically create the required fields for the

RulesEngineAction. To view the fields, hit the ‘Show all’ button next to the Advanced Parameters
drop down. Most of these values will typically be static, but the entity ID will need to be provided

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 75 of
142

as an input to the flow, or read from an entity object used in the flow

5. If you want to use the output of the rule execution in your flow, you will likely need to parse the

JSON result to access the individual components of the response. In most cases, this should not
be necessary because changes are automatically saved back to Dynamics. To do this, add the
‘Parse JSON’ step, and select the ‘executionResult’ content from the unbound action step. In the

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 76 of
142

‘schema’ field, copy and paste the JSON schema from the Custom Action section.

6. Working with nested objects can be difficult in Power Automate, so if desired you can add an

additional step to help break out the values you want. If, for example, you want to use
notifications and errors, you can parse the initial response as usual in the first step, and then
have additional parse JSON steps to parse out notifications and errors.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 77 of
142

If you follow this method, you can select the following properties from the output of the initial step,
then use the provided JSON schemas to parse just that property:

a. Notifications

{ "type": "array", "items": { "type": "object", "properties": {

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 78 of
142

 "Type": { "type": "integer" },
 "Message": { "type": "string" } },
 "required": ["Type", "Message"] } }

b. Errors

{ "type": "array", "items": { "type": "object", "properties": {
 "Source": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["Source", "Message"] } }

c. Validations

{ "type": "array", "items": { "type": "object", "properties": {
 "FieldName": { "type": "string" },
 "FieldDisplayName": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["FieldName", "FieldDisplayName", "Message"] } }

d. PropertyBag

{ "type": "array", "items": { "type": "object", "properties": {
 "key": { "type": "string" },
 "value": { "type": "string" } },
 "required": ["key", "value"] } }

7. If you need to return results from this flow to, for example, a canvas app, you can either build your

own response object, or you can feed the execution result directly into the ‘Response’ step, using
the same content and schema as above

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 79 of
142

Canvas Apps

While model-driven apps like Dynamics 365 are useful in many scenarios, canvas apps provide more
flexibility in design. While canvas apps do not necessarily have to use Dataverse entities, if your app uses
entity forms or integrates with entities in some other kind of way, you can utilize the integration with
Power Automate to run rules against these entities and display information from rule output directly in
your app. We will provide some boilerplate code here for potential use in a canvas app, but given the
flexibility of canvas apps, your code may look very different. The following directions will show you how to
add a ‘Run Rules’ button to a page with an entity form and use the output from rule execution to display
notifications to the user.

1. The starting point for these steps is a canvas app that already has a screen with an entity form on
it. In order to run rules against the particular entity the user is viewing, you will need to add the ID
field for the entity to the form, but you can set the visibility to ‘Off’ so it won’t show on the page

2. Next, we’ll need to create a flow that will invoke the included RulesEngineAction and run the

rules. For more information on how to set up a basic flow to run rules, refer to the previous
section on Power Automate. When creating this flow, you will need to use the ‘Power Apps’
trigger. This will make the flow available for selection and allow for input from the canvas app. To
get input from the canvas app, click in a content field and choose ‘Ask in Power Apps’ from the
‘Power Apps’ trigger. This will automatically create a new content variable that you can reference
in the flow and make that variable available as input to the flow. You can add as many of these
variables as you want, but you will need to add at least one variable for the entity ID. Other values
required by the RulesEngineAction, such as rule app or rule set name, can either be hard coded
into the flow, or passed in via variables

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 80 of
142

3. If you want to use the execution result in your canvas app, you’ll need to add a ‘Response’ step to

the end of the flow. The ‘executionResult’ will need to be returned in the body, and the JSON
schema from the Custom Action section will need to be provided in the ‘JSON Schema’ section
under ‘Advanced Options’

4. Next, you’ll need to add a button and link it to Power Automate flow we just created. To do this,

add a new button to the screen and go to the ‘Action’ tab for the button. Choose ‘Power
Automate’ and you should see the flow you created in the previous step listed here. If you do not

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 81 of
142

see the flow, make sure you canvas app and flow are in the same environment. Select your flow
to associate it to the button

5. You can use the following function snippet as a starting point for the function for your button. This

snippet calls the associated flow (in this case called ‘RunRules’) and sets the output to a variable.
It then loops over all of the notifications in the response, displays them to the user, and refreshes
the form data. Due to limitations in the way notifications work in canvas apps, only the most
recent notification is shown, but you can expand on the sample with your own custom code. In
this example, all of the properties required for the RulesEngineAction are passed in to the flow,
but you may choose to set these in the flow itself. The only value that must be passed in is the
entity ID, which is the first parameter here. When editing this code in the function editor, the
intellisense will display which parameter maps to which variable in the flow.

Set(response, RunRules.Run(AccountIdValue, "account", "DynamicsRules", "UpdatePhone", true));

ForAll(response.NotificationResponse.Notifications,
Switch(Type,
0, Notify(Message, NotificationType.Information),
1, Notify(Message, NotificationType.Warning),
2, Notify(Message, NotificationType.Error)));

Refresh(Accounts);

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 82 of
142

6. Once the setup is complete, you can test the rule execution by previewing the app and hitting the
‘Run Rules’ button. If execution is sucessful, you should see any notifications from rule execution
displayed in the app

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 83 of
142

Appendix F: Rules Configuration and Settings

The InRule Solution – Rules Configuration Form provides a central location where you can configure rule
execution options across the various methods of executing rules. By leveraging these Rule
Configurations users can configure the Run Rules Button and events to execute Rule Sets or Decisions
for a given entity, which provides the ability to run complex logic against that entity and its related entities.

At a summary level, the steps for setting up the Run Rules Button are as follows:

• Create a Rule Configuration Record

• Configure Rules Button Settings

• Create a Rule Set Configuration for each Rule Set or Decision

• Associate a Rule Configuration Record to an Entity

The Run Rules Button is also able to take advantage of Rule Sets or Decisions that utilize parameters,
more information about which can be found in:

• Using Input Parameters for Rule Sets or Decisions

Rule Configurations can also be configured to run a Rule Set or Decision against an entity on certain
events (entity create or update). The primary areas of focus for associating a Rule Set or Decisions with
an event are:

• Update a Rule Configuration Record

• Associate a Rule Configuration Record to An Entity Event

These events only use the primary Rule App and the primary Rule Set or Decision that are configured on
the Rule Configuration, so the Rule Set Configurations and Parameter Configurations that can be used
with the Run Rules Button are not necessary.

Create or Update Rule Configuration Records
1. If you are already logged in to Dynamics 365 or a Power App, click on the settings cog in the top

right and go to ‘Advanced Settings’. Alternatively, if you are in Power Platform Admin center, go
to the settings for your environment and then click on ‘All legacy settings’. From the settings
menu, select Rules Configuration under the InRule section.

Navigate to Settings in Dynamics Navigate to Settings in Power Platform

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 84 of
142

2. From the settings menu, click on ‘Rules Configuration’ under the ‘InRule’ section

3. The Rules Configuration page contains 3 panes – Service Endpoint Configuration, Step
Registration Configuration, and Rules Configuration. The following steps will focus on Rules
Configuration, then Step Registration.

4. Either add New or select an existing Rule Configuration record (e.g. Default). The following steps
use the Default record, but since Default is more of a global Rule Configuration, you should
consider creating a new Rules Configuration specific to the entity that you want to associate to
the Run Rules button. Select either a new or existing Rules Configuration record to edit:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 85 of
142

5. Configure the General Settings for the Rule Configuration as follows:

a. Choose a Name
• for a Rule Configuration that will be used for a specific entity (which is typically

the case), it’s best to create a name that represents the entity along with the
purpose of the rules (e.g. LoanEligibilityConfg)

b. Enter a Description
c. Enter the Rule App containing the Rule Set or Decision

• This setting is used as a global/default setting when individual Rule Set
Configurations are not provided in the Rules Button Settings section. If the Rule
Configuration is being associated to an entity event, then use this setting. If the
Rule Configuration is being used for the Run Rules Button, then use the Rule Set
Configurations in the Rules Button Settings section and this setting can be left
empty.

d. Enter the Rule Set or Decision to execute
• Similar to the Rule App setting, this setting is used as a global/default setting

when individual Rule Set Configurations are not provided in the Rules Button
Settings section. The same logic applies for when to set this field as compared to
when to use the Rule Set Configurations (described here).

e. Press “Save” in the top-left corner

Configure Rules Button Settings

Out-of-the-box, the Run Rules button is scoped to only run the default rule set that is specified by the
Rule Set Name field on the ‘Default’ Rule Configuration. However, you also have the option to add
additional Rule Set Configurations to allow one or more rule sets/decisions to be selected from the Run
Rules Button. When these are added, the Run Rules Button will display a dropdown menu to allow the
end user to select from a list of rule sets and decisions. To enable this functionality, follow the steps
below:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 86 of
142

1. Create or update a Rule Configuration according described in the previous step.
• Unless you want this list to appear on all entities, do not modify the ‘Default’ Rule

Configuration record.

2. The Rules Button Options can typically be left as the default values, for a complete overview of
these settings go to An Explanation of the Rules Button Options.

3. Under Rules Button Settings, click the ‘Add Existing Rule Set Configuration’ button on the ‘Rule
Set Configurations’ sub-grid. From here, you can search for an existing Rule Set if you have
already created one as part of another configuration, or you click ‘New Record’ to create a new
record

4. If you choose to create a new record, fill out the fields on the form that pops up. Rule Set Name,

Type and Rule App are required. Optionally, you can provide a Display Name, which will be
displayed in the dropdown instead of the Rule Set Name. Sort Order is also optional and takes
an integer which will be used to sort the Rule Set list in ascending order.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 87 of
142

Important: When running rules using a Decision, the decision authored in irAuthor must have an
input parameter with the entity type you are running rules against. Additionally, any output
parameters are not used by the framework, as the same entity is used as output.

This root entity parameter is provided by the framework automatically and does not need to be
defined in the Rule Set Configuration page (only in the Rule Application Decision definition). For
more information on how to configure other input parameters for your rule set or decision, refer to
Using Input Parameters for Rules.

5. Associate the configuration record above with the entity you’d like the list to appear on by
following the steps in Associating an InRule Configuration record to an Entity

6. Go to the entity page for the configuration that you have just edited and ensure that the Run
Rules button now has the desired rule set or decision options listed.

Using Input Parameters for Rule Sets or Decisions

If you need to collect information from end users that is not on an entity form, you can use rule
parameters for the user to enter at runtime. If you configure a rule set or decision to use parameters,
when a Dynamics user clicks on this rule for execution, they will get a dialog to allow them to input the
parameters.

Important: This functionality is not supported in on-prem environments, and is not intended for
use with Dynamics events.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 88 of
142

To enable this behavior, you will first need to add the parameters to the rule set or decision in irAuthor.
InRule for Dynamics supports all the primitive parameter types, but not entity parameters. However, these
are all collected as string values and converted in the execution service, so the end user must ensure the
values are formatted properly when providing them:

Important: When defining a Decision, the decision authored in irAuthor must have an input
parameter with the entity type you are running rules against. Additionally, any output parameters
are not used by the framework, as the same entity is used as output.

Next you will need to edit the Rule Set Configuration record to use this rule set or decision, along with its
associated parameters. In order to get to this point, you should have already gone through these steps:

1. First set up a config record if you haven’t already done so according to Updating InRule Rules
Configuration Records.

2. Next add an associated rule set config record following the steps in Configuring the Run Rules
Button for an Entity Form.

After filling out the form fields and saving the record, you’ll now be able to add parameter config entries in
the Parameters sub-grid.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 89 of
142

When adding a parameter, you only need to provide the parameter name, and optionally a description.
Repeat this process for each parameter you want to add. Once parameters are added to a rule set
configuration, the ‘Run Rules’ button will automatically display the parameter input dialog to users.

Associating a Rule Configuration record to an Entity

If you want to use different Rule Configurations for different Dynamics entities, you can create multiple
configuration records and then associate them to a particular entity. The same configuration record can
be associated to multiple different entities if desired. For Rule Configurations you wish you use with the
Run Rules Button, inrule_RulesEngineAction with be the SDK message you select.

Please note that if you wish to associate an inrule_RulesEngineAction to a specific entity type, this will
override the “default” custom action step. The “default” inrule_RulesEngineAction is a “global” custom
action step registration which all entities will default to using until you register a custom action step for a
specific entity type.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 90 of
142

1. Create or update the configuration record according to the previous steps
2. Return to the Rules Configuration page and navigate to the Step Registration Configuration

section and click Add New

3. Choose the SDK Message (Update, Create, inrule_RulesEngineAction)

a. Update – Update of the primary entity
b. Create – Create of the primary entity
c. inrule_RulesEngineAction – The custom action message invoked when the ‘Run Rules’

button is clicked. Choose this to override the default behavior for a particular entity
whenever the ‘Run Rules’ button is clicked, custom JavaScript is executed using the
included invokeCustomAction.js resource, the workflow activity is used, a form event is
used, or the custom action is invoked through some other means.

4. Select a Primary Entity for your rule registration to use
5. Open the Rule Configurations for Step dropdown menu that appears and select the Rule

Configuration that you made above.

6. Click “Update Step Registration” and verify that the registration successfully saves

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 91 of
142

An Explanation of the Rules Button Options

The below options must be passed into the InRule Custom Action. InvokeCustomAction.js exposes
InRule.executeRules() which will use values defined in the InRule Solution – Configuration Form.
Alternatively, a consumer of InRule.executeRules() can pass in an object that provides specific values
that should be used on a call by call basis

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 92 of
142

Show Run Rules
Button

If true, then the Inrule Run Rules Button will be visible on all pages.

If false, then the InRule Run Rules Button will be globaly removed. This will
only effect the the use of the button, but not other registered plugin steps.

UseDirtyEntity
If true, the InRule Custom Action will expect that form data will be included in
the API call. The form data is used to populate the root entity in the Rule
Engine. This is useful in scenarios when data has changed on the Dynamics
form but the save button has not yet been pressed. This allows a user to run
rules against data before a save takes place.

If false, the only data passed to the Custom Action is the Entity ID (guid) of
the entity, and the Custom Action will query Dynamics directly for that entities
data. This limits the InRule Custom Action to being aware only of data that
has been fully saved to Dynamics.

UseEntityPrefix
If true, then the supplied RuleSetName is interpreted as a suffix to the
EntityTypeName. For example: if the supplied RuleSetName is “DefaultRules”
and the EntityTypeName you are dealing with is “Account”, then the
RuleSetName actually used will be “AccountDefaultRules”.

If false, then the supplied RuleSetName is interpreted literally.

ShowConfirmation
If true, this will ask the user in the
User Interface with the following
visual prompt before actually
executing rules:

ShowStatus
If true, a status messages will
be displayed within the
Dynamics interface when
rules are executing, when
rules are finished, and if rules
are cancelled by the
confirmation dialog.

Displaying Additional Logs and Response Data in Trace Logs

The rule execution service generates logs that are helpful for troubleshooting rule execution, but by
default these are only logged on the execution service itself and not returned in the response to reduce
response size and avoid trace log truncation. However, for convenience different log sections can be
configured to be returned in the response and logged to the plugin trace log. These sections are:

1. Rule Execution Log: The flow of rules and changes in state during rule execution
2. Entity Loading Log: What and how many entities are loaded on the rule execution service before

rule execution, and how long it takes to retrieve these entities from Dynamics. More details can
be found in Execution Service Performance

3. Entity Image: The complete root entity in JSON format including changes from rule execution

When enabling these options as much as possible will be logged, but due to character limits in the plugin
trace log some data may be truncated. By default all of these options are all off, but they can be enabled
with the following steps:

1. Navigate to the InRule Solution Rule Configuration Form

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 93 of
142

2. Scroll down and select the ‘Default’ record under the ‘Rule Configurations’ section. Please note
that the change made in this specific record will take effect across the whole system.

7. Switch to ‘Yes’ any of the logs you’d like to be returned under the Rule Execution Service

section and save the config record:

Disabling the Run Rules Button

Out-of-the-box, the Run Rules button is used to manually initiate the execution of rules. In some
instances, the Run Rules button may not be needed, and the button can be disabled as described below.

1. Create or update a Rule Configuration according to Create or Update Rules Configuration
Records. If you want to hide the button for all forms on all entities, edit the default record.
Otherwise, create a new record for the specific entity you’d like to show or hide the button on.

2. Set the Show Run Rules Button under the Rules Button Settings section

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 94 of
142

3. If you edited the default record, you can skip this step. Otherwise, you’ll need to associate the

Configuration record you just modified with a particular entity by following the steps in Associating
an InRule Configuration record to an Entity

Changing the Max Plugin Depth

Dynamics provides the plugin depth property to the plugin context to track the current depth of the call
stack. Whenever another plugin or process is executed within the scope of the current transaction, this
value is incremented by 1 in the invoked plugin. This value is commonly used to prevent infinite loops,
where multiple plugins keep firing each other. The Max Plugin Depth setting in the InRule Configuration
will stop execution of the plugin whenever the depth is greater than the specified value. By default, this
value is set to 1, but you may need to change it in certain cases, such as using the included custom
workflow activity, or running rules from within your own custom plugin. To update this value, change the
‘Max Plugin Depth’ setting using the steps in Updating InRule Rules Configuration Records, and
optionally associate the record with a specific event and entity by following the steps in Associating an
InRule Configuration record to an Entity

Disabling Persist Changes

When Persist Changes is set to enabled all changes made to all entities by InRule are persisted back to
Dynamics. When disabled any changes made by InRule are sent back in the response and can be
consumed by the caller, but they are not persisted back to Dynamics.

The Persist Changes setting can be found in the Plugin section of the Rule Configuration.

Configuring the AppDomain Cache

When using the Rule Helper, the integration framework provides the ability to save query results in a
persistent cache in the execution service AppDomain. This is useful if you have relatively static data that
is used consistently in one or more rule apps, since this cache persists across rule executions. By default,
this cache is disabled, but you can enable it by setting a value for the cache timeout in the Rule
Configuration. To update this value, change the ‘AppDomainCache’ setting to the desired retention time
in seconds using the steps in Create or Update a Rule Configuration Record, and optionally associate the
record with a specific event and entity by following the steps in Associating a Rule Configuration record to
an Entity.

The AppDomain Cache can be cleared prior to its configured duration in three ways:

• The Clear Cache button, available right underneath the configuration field

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 95 of
142

• Resetting the cache value to zero. This causes the cache to be cleared the next time the rule
helper is used from the execution service

• Restarting the Rule Execution Service

For more information on how to use the rule helper, refer to Appendix D: Accessing Dynamics 365
Directly from Rule Helper

Calling ApplyRules (Auto Fire Mode Rule Sets)

To execute a Rule Set with its Fire Mode set to “Auto,” simply do not define a Rule Set for your rule
configuration and associate that rule configuration to the entity type that your auto Rule Set is associated
with.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 96 of
142

Appendix G: Endpoint Override Configuration

As of version 5.5, InRule for Dynamics now supports Overriding Endpoint Configuration via Azure App
Service App Settings. This allows for the overriding of various endpoint settings configured on a rule app,
such as REST API URLs or Database Connection Strings, by setting App Settings on your execution
service App Service.

To set an endpoint override on your app service, simply navigate to your rule execution app service and
go to the Configuration view:

Select “New Application Setting”

The name of the override uses the following convention:

inrule:runtime:overrides:<YourEndpointNameHere>:<OverrideType>:<OverrideSetting>

Your endpoint name should match the name of the endpoint or data object in the rule app you wish to
override. The available override types are:

AppSettings Key Description
inrule:runtime:overrides:<endpoint-
name>:DatabaseConnection:ConnectionString (string) Database connection string.

inrule:runtime:overrides:<endpoint-
name>:SendMailServer:ServerAddress (string) Mail server host name.

inrule:runtime:overrides:<endpoint-name>:WebService:WsdlUri (string) Web service WSDL URI.
inrule:runtime:overrides:<endpoint-
name>:WebService:ServiceUriOverride

(string) Web service SOAP end
point URI.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 97 of
142

inrule:runtime:overrides:<endpoint-
name>:WebService:WebServiceMaxReceivedMessageSize

(integer) Web service client max
received message size in bytes.
(max 2147483647)

inrule:runtime:overrides:<endpoint-
name>:XmlDocumentPath:XmlPath

(string) XML document file path on
Runtime Service.

inrule:runtime:overrides:<endpoint-name>:XmlSchema:XsdPath (string) XML schema path or URL.

inrule:runtime:overrides:<endpoint-
name>:XmlSchema:EnableXsdValidation

(boolean) Whether to validate XML
Entity state against XSD. (true or
false)

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceRootUrl (string) REST service root URL.

inrule:runtime:overrides:<endpoint-
name>:RestService:AuthenticationType

(string) REST service
authentication type. (None, Basic,
NTLM, Kerberos, Custom)

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceUserName

(string) REST service
authentication username.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServicePassword

(string) REST service
authentication password.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceDomain

(string) REST service
authentication domain.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceX509CertificatePath

(string) REST service X509 client
certificate path on Runtime Service.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceX509CertificatePassword

(string) REST service X509 client
certificate password.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceAllowUntrustedCertificates

(boolean) Whether to allow REST
service certificates not signed by
trusted CA. (true or false)

inrule:runtime:overrides:<dataElement-name>:SqlQuery:Query (string) SQL query text.
inrule:runtime:overrides:<dataElement-
name>:InlineTable:TableSettings

(string) XML serialized string of
TableSettings object. (see 1.)

inrule:runtime:overrides:<dataElement-
name>:InlineValueList:ValueListItems

(string) XML serialized string of
ValueListItem collection (see 2.)

inrule:runtime:overrides:<dataElement-
name>:InlineXmlDocument:InlineXml (string) XML document.

inrule:runtime:overrides:<dataelement-
name>:RestOperation:UriTemplate

(string) REST operation URI
template

inrule:runtime:overrides:<dataelement-
name>:RestOperation:Body (string) REST operation body

inrule:runtime:overrides:<dataelement-
name>:RestOperation:Headers:<header-name> (string) REST operation header

The endpoint setting is the name of the setting to override for that Endpoint Type. Some Endpoint Types
have several Endpoint Settings; the available settings for each Endpoint Type can be read about in the
InRule support site documentation.

Below is what a properly configured end-result would look like, using a DatabaseConnection override as
an example:

https://support.inrule.com/hc/en-us/articles/360061544332-Runtime-Overrides-How-to-Quickly-and-Securely-Point-to-Desired-Endpoints

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 98 of
142

The value of the override App Setting would then be set to whatever value you wish to override with.
Once your override is set, simply save the changes to your app service. Upon the next execution of rules,
the specified endpoint type will be overridden with the supplied value.

Rest Service Override

Unlike other override types, the RestService override type is made of multiple sub-types listed below.
When overriding a rest service endpoint, only include the ‘RestService’ override type in the key, not the
sub-type. For example, if overriding the reset service certificate path, you would need to create two app
settings with the following keys:

inrule:runtime:overrides:YouRestServiceName:RestService:RestServiceX509CertificatePath
inrule:runtime:overrides:YouRestServiceName:RestService:RestServiceX509CertificatePassword

The following are the RestService override sub-types and associated settings

• RestServiceRootUrl
o RestServiceRootUrl

• RestServiceAuthenticationType
o AuthenticationType
o RestServiceUserName
o RestServicePassword
o RestServiceDomain

• RestServiceX509CertificatePath
o RestServiceX509CertificatePath
o RestServiceX509CertificatePassword

• RestServiceAllowUntrustedCertificates
o RestServiceAllowUntrustedCertificates

 Important: If an override type contains multiple settings, like RestServiceX509CertificatePath or
RestServiceAuthenticationType, be sure to include an App Setting for each of the settings listed in the
documentation.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 99 of
142

Appendix H: Azure App Service Plan & Application Insights
Configuration

Azure App Service Plan Overview
The Dynamics Rule Execution Azure App Service runs on an Azure App Service Plan. The ARM
Template deployment process, outlined in Section 3.3.2: Rule Execution App Service for Dynamics 365
will require you to provide an appInsightsConnectionString and set the connection string.

This App Service Plan will be deployed to the subscription and resource group provided during the
deployment process. Additionally, the plan will be configured with a “B1” (Basic, Small) pricing tier. This is
the lowest tier possible for the Rule Execution App Service to run in, as it is the lowest tier that allows
running in Always On mode. Always On is required to permit a continuous web job to run on the app
service. Thus, regardless of whether or not you opt to allow the ARM template to create an App Service
Plan for you, or use a pre-existing one, the plan must, at a minimum, be of the “B1” tier or higher.

 Important: If you leave the ARM template configured to re-deploy the App Service Plan, updating
an existing one, the pricing tier of that App Service Plan will be set to the default pricing tier,
regardless of what it may currently be set to. If you do not wish the pricing tier to be reverted to
default, it is recommended you follow the steps below.

Should you wish to use a pre-existing Azure App Service Plan rather than have a new one created for
you, a few configuration steps within the ARM template itself are necessary.

Configuring the ARM Template to Use an Existing Azure App Service
Plan

1: Locate InRule.Dynamics.Service.parameters.json

The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined in
Section 3.3.2: Rule Execution App Service for Dynamics 365

2: Populate “appServicePlanName” parameter

Open the file in your text editor of choice. First, populate the “appServicePlanName” parameter at the
bottom of the parameters file. Set the value equal to the name of your app service plan.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 100 of
142

3: Update “createOrUpdateAppServicePlan” parameter

Next, you’ll need to set the parameter called “createOrUpdateAppServicePlan” to false.

4: [Optional] Create “servicePlanResourceGroupName” parameter

In the event the App Service Plan you intend to use is located in a different resource group than the one
you are deploying the ARM template against, you need to add a parameter to inform the ARM template
what resource group your App Service Plan is in. Create the “servicePlanResourceGroupName”
parameter as shown below and define the value as the name of the resource group your App Service
Plan exists in.

5: Save InRule.Dynamics.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section 3.3.2:
Rule Execution App Service for Dynamics 365 as normal; your rule execution app service will now deploy
to the App Service Plan you defined in the steps above.

Azure Application Insights Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 101 of
142

For improved logging capabilities, the Dynamics Rule Execution Service is configured to use an Azure
App Insights resource as a logging sink in addition to the logging the App Service itself already has. ARM
Template deployment process outlined in Section 3.3.2: Rule Execution App Service for Dynamics 365
will, by default, automatically deploy an App Insights resource for you.

The app insights resource will aggregate all the logs generated from the execution service. These logs
can be tremendously useful for debugging any issues encountered with the Rule Execution Service.
Depending on the level of event logging configured for the Rule Execution Service Event Log, these logs
can add insight into rule executions, entity loading, overall execution timing, and any errors encountered
during rule execution.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 102 of
142

Appendix I: Dataverse Connectivity and Authorization

There are two Dataverse authorization contexts used by the InRule integration framework for different
functional purposes:

• Plugin authorization context
o handles loading of configuration and saving of changes from rules

• Execution service authorization context
o used to read additional entities from Dataverse required for executing rules

When executing rules via Dataverse, the InRule plugin handles the initial event from the custom action or
entity before making a request to the execution service. The execution service then loads additional
entities required for running rules, and passes entity changes back to be persisted by the plugin.

The above dataflow diagram is an excerpt from the Solution Architecture Overview. Each component
needs to be configured with the appropriate accounts and permissions to successfully execute rules. This
appendix describes the requirements and setup for both the plugin and execution service authorization
contexts used by these components.

Plugin Authorization Context
The InRule plugin contained in the Dataverse solution can be invoked via either the included custom
action or by registering additional Dataverse event handlers. The plugin loads initial config information
from the step registration associated with the event, and then uses this information to load additional
configuration from the custom InRule config entities included with the solution. It then uses this
information to make a request out to the rule execution service. When it receives a response from the
execution service it saves any entity changes sent over as the result of rule execution.

The plugin is configured by default to run in the calling user’s context, but it can also be manually
configured to run in a specific user context via the plugin registration tool. Whichever user context is
configured, the user context will need to have roles assigned with the required permissions to function
properly.

Roles and Permissions for the Plugin Context

The permissions required are divided into two parts, the baseline permissions required to access the
plugin, config, and connections, and the permissions required to persist any entity changes.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 103 of
142

The required baseline permissions are included in the ‘InRule Rule Executor’ role that is a part of the
solution. Assigning a user this role will give them permissions required for the plugin to execute and the
ability to use the ‘Run Rules’ button on entity forms.

The user context will also need write permissions for any entity changes that need to be saved as part of
rule execution. The calling user will often already have the roles required to write to entities they already
work with but may need additional roles or permissions added for new entities.

Execution Service Authorization Context
The rule execution service receives the incoming request from the plugin and uses the rule application
schema to load any additional related entities before applying rules. Because the execution service is out
of process to Dataverse, it requires a separate service account to connect back and log in to Dataverse.

There are two supported Authentication Types to establish this connection:

• S2S
o Application User with an InRule-managed client ID and secret

• OAuth
o Client-supplied username and password

Roles and Permissions for the Execution Service Context

Unlike the plugin context, the rule execution service does not need access to any baseline config or
InRule entities, it only needs read access to the specific entities loaded during rule execution. A
Dataverse security role will need to be assigned to the service account used to connect to Dataverse,
whether that’s the Application User configured with S2S or the named user configured with OAuth.

The ‘InRule Integration Administrator’ role is included with the solution for convenience and is
automatically set up during deployment with read access to all entities, but existing or new custom roles
can be used as well.

• Note: While the plugin context and rule execution service will both need access to similar
entities and a single role could be used for both, the permissions can be divided into separate
read and write roles for greater security.

Consenting to the InRule SaaS Entra ID Application

When using InRule SaaS, the InRule Entra ID application (FKA Azure AD Application) that governs the
integration will need to be consented to before the execution service can connect to the client Dataverse
instance. This consent provides the minimal permissions necessary for the execution service to be able to
log in and connect to the Dataverse API as the configured user. The roles described in the previous
section will still need to be assigned to the service account before any data can be accessed.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 104 of
142

Following is the list of permissions granted through the consent process:

Configuring the Dataverse Connection in SaaS
InRule SaaS offers customers the most streamlined deployment process, eliminating the need to install
and manage self-hosted Azure App Services, as InRule will manage the deployment of the Rule
Execution Service for you. SaaS customers are also able to use their SaaS portal to access the
information needed for configuring the InRule Solution for Dataverse and provide Service Account
credentials for the SaaS-hosted Rule Execution Service to connect to a Dataverse environment.

Granting Consent

To allow the Rule Execution Service to connect with the Dataverse environment, an administrator for the
Dataverse environment will need to grant consent. For those wishing to use an S2S connection, an
application user will then need to be created. This can all be done through the InRule SaaS page
provided in the InRule Solution for Dynamics 365.

Selecting ‘Open Admin Consent Page’ will redirect to a Microsoft-managed page that will show the
permissions being requested. The page will look like this:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 105 of
142

Clicking Accept will grant the requested permissions and then redirect to an InRule success page.

Creating an Application User

Once consent has been granted to the InRule Decision Platform application, the application will be
available in the client tenant and an application user based on it can be created in the Dynamics
environment. The application user can be created either by selecting the ‘Create Application User’ button
on the SaaS Configuration page or by using the Power Platform Admin Center.

Selecting the ‘Create Application User’ button will automatically create an application user in the current
Dynamics environment and then assign the included ‘InRule Integration Administrator’ role. Once the
application user has been created it can be managed like any other application user and roles can be
added or removed from it.

Alternatively, admins can use the Power Platform Admin Center to manually create the application user
and assign roles to it. Follow the directions here searching for ‘InRule Decision Platform’ or ‘5c6f5d76-
9f2c-4e9c-9bdb-58af9d31f09c’ when adding the app: https://learn.microsoft.com/en-us/power-
platform/admin/manage-application-users#create-an-application-user

Dataverse Runtime Settings in the InRule SaaS Portal

SaaS Customers can find the configuration needed for connecting to their Dataverse instance through the
Configuration page of their SaaS portal.

https://learn.microsoft.com/en-us/power-platform/admin/manage-application-users#create-an-application-user
https://learn.microsoft.com/en-us/power-platform/admin/manage-application-users#create-an-application-user

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 106 of
142

1. Important: Please note that only the Dynamics 365 Runtime Settings are currently used by the
Dynamics Execution Service. In a future release, settings from the Execution Server Settings and
General Settings section will also contribute to the Dynamics Execution Service. In the interim, if
you need any of those settings changed, please reach out to InRule Support.

Providing Connection Information

Clicking the drop-down arrow for the Dynamics 365 Runtime Settings section will allow users to provide
connection information that will allow the SaaS-hosted Rule Execution Service to interact with their
Dataverse environment. You have two options for authentication type, S2S and OAuth.

• If you choose S2S, InRule will manage the credentials for accessing Dynamics, and you will just
need to create the associated Application User in your Dynamics instance.

• If you want to provide and manage your own credentials, you can choose OAuth, which will
authenticate with a named user account.

Important: When changes are made in the SaaS portal it will take a few minutes for the SaaS-
hosted Rule Execution Service to refresh and use the updated information.

1: Using an S2S Connection

For an S2S connection, only the Organization URL will need to be configured in the portal.

2: Using an OAuth Connection

For an OAuth connection, the Organization URL, as well as Service Account username and password,
will need to be provided.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 107 of
142

1. Important: MFA must be disabled for the OAuth service account. A service account with MFA
enabled will not allow the Rule Execution App Service to authenticate with Dynamics 365.

Configuring the Dataverse Connection for Self-hosted Installs
Self-hosted installs of InRule will need to build a Dataverse connection string to pass in during
deployment of the required Azure resources. This connection string will be used in the Execution Service
Authorization Context to connect back to Dataverse. Self-hosted installs have greater flexibility when
choosing authentication methods, but the two documented here are OAuth and S2S as discussed above.
The primary difference with self-hosted as compared to SaaS installs is that clients will need to create
their own Entra ID application instead of using the InRule-managed one.

Information on connection string formatting can be found here: https://docs.microsoft.com/en-
us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
For OAuth authentication, you can use the default app provided by Microsoft instead of creating and
configuring your own application. You can find more about this, as well as the transition from WS-Trust
(Office 365) to OAuth authentication here: https://docs.microsoft.com/en-us/powerapps/developer/data-
platform/authenticate-office365-deprecation

Creating the Entra ID Application

This step is only necessary if you are self-hosting and intend to leverage a server-to-server (S2S)
connection between the rule execution service and your Dynamics environment. You can also follow the
directions here if you are using OAuth authentication, and do not want to use the Microsoft default app
and want to create your own instead.

Registering an Entra ID application is fully automated in the Register-AzureApp.ps1 PowerShell script
included in the RuleExecutionAzureService folder within the InRule for Microsoft Dynamics 365
Integration Framework.zip file downloaded in Section 3.2: Optional Resource Files.

This script requires the Azure AD PowerShell module to be installed on the computer before running the
script. If this module is not yet installed, you can install it by opening an admin PowerShell window and
executing ‘Install-Module AzureAD`.

By default, the application is registered in the primary directory the user account belongs to. If the app
needs to be registered in a different Azure Active Directory tenant, you can pass in the tenant ID with the
optional “TenantId” parameter.

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 108 of
142

Run the script and log in with an admin account with sufficient permissions to create an Azure AD app
when prompted. Observe that no errors occur while the application registration script is running.

When finished, the script will output three values: The application name, application ID, and the secret
key. Save these 3 values, particularly the secret key, as there will be no way to retrieve this later. The
application ID will be needed when deploying the InRuleSolution for Dynamics 365, and both the
Application ID and Key will be needed for the connection string when deploying the Rule Execution App
Service.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 109 of
142

Appendix J: Dynamics 365 Tracing and InRule Event Logging

Dynamics 365 Plug-In Trace Logging
The Dynamics Plug-In Trace Log feature is a debugging tool made available within Dynamics itself for
reviewing plugin events and exceptions. This section will highlight how to enable this feature within
Dynamics and how to utilize it. Currently, Plug-In Trace Logs only work with the Execution Service in
online deployments. For more detail on the limitations of on-prem deployments, reference Appendix M:
Known Issues, Limitations and Troubleshooting.

Enable Plug-In Trace Log
To enable the Plug-in Trace Log, first navigate to Settings > Administration.

Once you’re in the Administration section, click on System Settings.

From here you can navigate to the Customization tab and select All for the Enable logging to plug-in
trace log field. Then click OK. This will create trace logs for all plugin events within your Dynamics
environment. In the context of InRule, this includes Create, Update, and Custom Action events.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 110 of
142

Viewing Plug-In Trace Log

To review Plug-In Trace Logs after they have been enabled, navigate to Settings > Plug-in Trace Log.

Here, there will be a list populated with all logged plugin events. If you do not see a list of logs in a similar
fashion as below, that means no plugin events have been logged.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 111 of
142

For this example, we will view the resulting log of executing a Custom Action from manually running rules.
To view a specific log, simply click on the hyperlinked Type Name text.

The first section within a specific trace log is the Configuration section, which details the various
configuration details about the event, including the Rule Configuration ID used, the event type, the plugin
step ID, and more. This section can be useful for debugging by providing a quick means of determining
whether or not the rules executed were properly configured.

The second section, the Execution section, is typically the most useful for debugging. It will provide a
block of all messages logged by the plugin during its execution, as well as any exception details, if the
event resulted in an exception.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 112 of
142

The message block logs rule execution “milestones.” In the event that the plugin fails to execute properly,
the message block is useful for determining at what point it is failing. The Exception Details block will
provide any related details to any exception thrown and is generally the first place to look to diagnose the
nature of a plugin execution failure.

Additionally, when interested in performance information, the application logs will also provide insight into
data loading time. As can be seen below, this is broken up into total loading time, which is how long the
entire loading process takes with internal processing included, total org time, which is strictly the summed
total of all entity loading times, and then loading times for each collection loaded. This will also display the
total number of entities in each collection.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 113 of
142

Rule Execution Service Event Log
Event logging can be enabled in the Rule Execution App Service to monitor application events. These
logs can be tremendously useful for debugging any issues encountered with the Rule Execution Service.

Configuring Event Logging Levels

The Application Event Log can quickly become bogged down with too many logs, making finding specific
logs that you may be interested in more difficult. To cut down on excessive informational logs, the Rule
Execution Service, by default, will be deployed with a logging level of “Warn,” meaning only Warnings and
Errors will be logged. However, this can be adjusted as needed for whatever your needs may be.

To adjust your Rule Execution Service’s logging level, navigate to your App Service as created as a part
of the Azure deployment process detailed in Section 3.3.2: Rule Execution App Service for Dynamics 365

Once you’re looking at the overview of your app service, select Configuration in the settings menu:

Scroll down until you see the Configuration section:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 114 of
142

Locate the inrule:logging:level setting. Note that its value is currently set to “Warn.”

Simply change the value to the desired logging level. You may select from one of the following levels that
the Rule Execution Service leverages:

Logging Level Details
Info Logs all application events, including Informational

events that track the general flow of the
application

Warn Logs Warning and Error events. Warning events
highlight abnormal or unexpected events in the
application flow, but don’t otherwise cause
application execution to stop

Error Logs only Error events. Error events result in the
halt
ed execution of the application’s current activity
due to a failure

Once you have configured the setting to the desired to level, press Save at the top of the page:

Viewing Application Event Logs

To enable event logging, login to Azure and navigate to your App Service as created as a part of the
Azure deployment process detailed in Section 3.3.2: Rule Execution App Service for Dynamics 365.

Once you’re looking at the overview of your app service, select Diagnose and solve problems

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 115 of
142

Select Diagnostic Tools

Select Application Events Logs

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 116 of
142

You should see a list of all application events logged by the rule execution service, denoted with the
notification level, timestamp, source, event ID, and web server. Selecting an event log will cause the log
details to appear below the list of logs.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 117 of
142

In the event of rule service issues, error events in this log stream can be useful for debugging purposes.
For example, below is an example of an error event log in an instance where the rule service contacting
the catalog looking for a rule application that didn’t exist:

Typically, the response message at the beginning of the log and the Error Information section provides
the most pertinent debugging information.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 118 of
142

Appendix K: License Management

Licenses are required for both the Catalog Service and the Rule Execution Service. Whether you’re
deploying the Online or On-Prem solution will determine the appropriate method for activating your InRule
licenses. For Online installations, you will have an Azure license file provided to you by InRule which can
uploaded either through Azure’s App Service Editor tool or via FTP. Walkthroughs of both means are
provided below.

For On-Prem solutions, you will need to leverage the InRule License Activation Utility. A walkthrough of
this process can be found here.

Uploading a License File

Azure App Service Editor

To upload the InRule license file to your execution service or your catalog service, navigate to the Azure
portal and to the appropriate app service. On the left-hand nav-bar, scroll down until you find the App
Service Editor option, under the Development Tools header:

On the resulting page, press “Go”

From here, you’ll need to navigate to the appropriate file location, which is different depending on if you’re
adding it for the Execution Service or the Catalog Service:

Execution Service Catalog Service

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 119 of
142

Expand the app_data folder and navigate to its inner
most directory. Select the InRule.Webjob folder and
right-click, then select Upload File:

Find your InRuleLicense.xml file wherever you have it
stored and select Open to finish.

Right-click anywhere in the top level of the
wwwroot directory, then select Upload File:

Find your InRuleLicense.xml file wherever
you have it stored and select Open to finish.

With that, your license file should be uploaded and usable by your Rule Execution or Catalog Service.

FTP
This example leverages Azure CLI in addition to PowerShell commands. If you intend to use this
method, please run the CLI from PowerShell.

Alternative approaches using just PowerShell should be possible but are not detailed in this
document.

First, retrieve the FTP deployment profile (url and credentials) with the az webapp deployment list-
publishing-profiles command and put the values into a variable:

Example: az webapp deployment list-publishing-profiles --name contoso-execution-
prod-wa --resource-group inrule-prod-rg --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

az webapp deployment list-publishing-profiles --name WEB_APP_NAME --resource-group
RESOURCE_GROUP_NAME --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

Then, upload the license file using those retrieved values:

Example:
$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles
https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 120 of
142

System.Uri($creds.publishUrl +
"/app_data/Jobs/Continuous/InRule.Crm.WebJob/InRuleLicense.xml"); +
$client.UploadFile($uri, "$pwd\InRuleLicense.xml");

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl +
"/app_data/Jobs/Continuous/InRule.Crm.WebJob/InRuleLicense.xml"); +
$client.UploadFile($uri, "LICENSE_FILE_ABSOLUTE_PATH")

Activating Your License Utility
Activating your license for an On-Prem installation of InRule requires leveraging the InRule Activation
Utility. A walkthrough of this process can be found below:

1: Download the license activation utility:
Download and install the InRule Activation Utility from support.inrule.com on the server where you intend
to deploy the InRule Execution Service.

2: Run the Activation Utility:
Run the activation utility as an Administrator to install Event Log
Source.

3: Find your license keys:
Go to support.inrule.com and select Licensing Info on the left-hand navigation bar to find your irServer
license keys. Which one(s) you’ll need are dependent on what environment you intend to setup your
InRule components in.

https://support.inrule.com/
https://support.inrule.com/

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 121 of
142

4: Enter your name, organization name and license keys into the
Activation Utility:
Enter your name, organization and the relevant license keys into the Activation Utility and press Activate

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 122 of
142

5: Verify your license keys have activated:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 123 of
142

Appendix L: New Releases and Upgrading Versions

In most cases, updating InRule for Dynamics is a relatively straight forward process. You will effectively
follow the same order of operations of the initial installation steps outlined in this project.

The components that will need to be upgraded are:

• irAuthor with irX for Dynamics 365
• Rule Execution and Catalog Services
• InRule for Dynamics Solution

All 3 of these components must be upgraded in all upgrade scenarios.

Beyond that, this appendix discusses some special cases and considerations to be aware of when
upgrading.

Release History

Version Compatibility Considerations
The below list of items for upgrade consideration includes specific fixes or changes that may require
migration or configuration action. Issue number and title are included here, but you can refer to the
release notes section of the support site for further information: Decision Platform Release Notes – InRule
Technology. This page includes release notes for all InRule products, but Dynamics release notes will be
prefixed with “DYN”.

https://support.inrule.com/hc/en-us/sections/360012854991-Decision-Platform-Release-Notes
https://support.inrule.com/hc/en-us/sections/360012854991-Decision-Platform-Release-Notes

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 124 of
142

Important: Again, when upgrading to a new version, irAuthor, the InRule for Dynamics Solution,
and the Azure Rule Execution Service should always be upgraded together

Issue Number Version Description
DYN-778 5.8.1 Removed deployment of app insights resource and all associated

conditional logic from ARM templates. Instead, users can provide an
Application Insights connection string from an existing resource.

DYN-673 5.7.3 Added ruleAppLabel parameter to execution service arm template. By
default this label is empty. No ruleAppLabel will result in the most recent
version of a rule app being used. Customers relying on a label to denote
the production ready version of a rule app, such as the LIVE, will want to
add the production label to the arm template prior to upgrade deployment.

DYN-469 5.7.3 Removed legacy S2S authentication settings
DYN-558 5.7.2 Added a new page to the InRule solution and sitemap to aid configuration

for SaaS setups. This page allows you to grant the required consent to
the InRule Azure AD application, and creates the associated Application
User for you

DYN-502 5.7.0 Rule configurations have been updated to use Rule Set configuration
entities rather than a single rule set list field. The new Rule Set
configuration allows for setting Display Names, Sort value, Description,
and Parameters. This should not affect existing rule configurations; an
upgrade for rule configurations to this new model will automatically occur
when upgrading to v5.7.0

DYN-40 5.7.0 Deprecate custom S2S authentication with built-in connection string
support

DYN-445 5.7.0 Deprecate usage of Xrm.Page. As a result, formContext will need to be
passed as the first parameter to inRule.executeRules, if calling the
function from custom JavaScript

DYN-447 5.7.0 Remove solution support for Dynamics 8.2
DYN-442 5.6.0 Added support for advanced authentication to irX, including MFA

SaaS Upgrades
For SaaS customers, the upgrade process will be communicated to you by InRule via email. Keep an eye
out for these communications, as they will be the primary source of guidance around what to do in
upgrade scenarios. Relevant information from these communications includes when an update will be
occurring, the new features coming with the update, the maintenance times required to apply the update,
and mandatory steps you’ll need to take immediately following the update. For upgrading the InRule
Dynamics Solution, it is recommended to update via the Power Platform Admin.

Execution Service App Settings

When running an ARM template deployment to upgrade an existing app service, the new deployment will
remove all app settings that currently exist and replace them with the settings during the new deployment.
Because of this, it is important to save your parameters file when you do a deployment. If you do not have
your previous parameters file you can find it in the deployments section of the Azure Portal. This also
means that any settings that were changed or added manually, such as logging level or endpoint
overrides, will be removed.

Alternatively, current app setting values can be manually set in the ARM template parameter file prior to
deployment to have the template deploy using those values. Should you go this route, be thorough during

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 125 of
142

the transfer process, it is common for values to have been manually changed over time. For a thorough
breakdown of the relevant parameters, reference Section 3.3.2: Rule Execution App Service for
Dynamics 365

Lastly, redeploying or upgrading via the ARM template will remove your InRule license from the resulting
app service. The license file will need to be manually added back; for a walkthrough on how to do this,
reference Appendix K: License Management.

WS-Trust/Office365 Auth Deprecation
As of April 2022, Microsoft has deprecated WS-Trust/Office365 Authentication. If you are intending to
leverage S2S authentication, it is strongly recommended you familiarize yourself with Microsoft’s
announcement and understand the transition to OAuth based connection strings, as any connection
strings used will need to be OAuth. You can find Microsoft’s documentation on the topic here.

Early versions of irX (<5.6) and the integration framework (<5.2) can only leverage WS-Trust
authentication and will not be compatible with this change. For full functional coverage, customers will
need to be running these versions or newer to ensure compatibility with this transition.

S2S Legacy Settings Removal
In previous versions of the Rule Execution Service, S2S connection information was provided in individual
app settings. Configuring the connection information this way was deprecated in 5.7.0, and support for it
has been removed entirely in 5.7.3. The legacy app settings that have been removed are:

• orgUrl
• appId
• appSecret

S2S connection information should now be provided as a connection string in the crmConnectionString
app setting. See link for configuring connection string information: https://docs.microsoft.com/en-
us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect

Execution Service App Settings
When running an ARM template deployment to upgrade an existing app service, the new deployment will
remove all app settings that currently exist and replace them with the settings during the new deployment.
Because of this, it is important to save your parameters file when you do a deployment. If you do not have
your previous parameters file, you can find it in the deployments section of the Azure Portal. This also
means that any settings that were changed or added manually, such as logging level or endpoint
overrides, will be removed.

Alternatively, current app setting values can be manually set in the ARM template parameter file prior to
deployment to have the template deploy using those values. Should you go this route, be thorough during
the transfer process, it is common for values to have been manually changed over time. For a thorough
breakdown of the relevant parameters, reference Section 3.3.2: Rule Execution App Service for
Dynamics 365

Lastly, redeploying or upgrading via the ARM template will remove your InRule license from the resulting
app service. The license file will need to be manually added back; for a walkthrough on how to do this,
reference Appendix K: License Management.

https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 126 of
142

Solution Customizations
If you have used the Plugin Registration tool to change the ‘Run in User’s Context’ setting on the ‘InRule
Custom Action Step’, you will need to set this back when updating. Additionally, in the unlikely event you
have made any other customizations to resources included in the solution, such as the JavaScript web
resources, you will need to re-apply these customizations after updating the solution.

Upgrading from Cloud Service-based versions
Earlier versions of InRule for Dynamics used Azure’s legacy Cloud Service platform for the rule execution
service. The last version to support this was 5.1.1. Versions from 5.2.0 and on now use Azure App
Service for the same purpose. When upgrading from one of these versions, simply follow the steps for
creating, deploying, and configuring the new Azure resources. Both the App Service and Cloud Service
versions use Azure Relay for communication with Dynamics, but in most cases, it is simpler to let the
provided ARM template provision a new Relay for use with the App Service. Continue following the rest of
the steps in the Deployment Guide to deploy the new version of the Dynamics package and configure it to
point to the new Relay and execution service. Once you have verified the new setup is working, you can
delete the old Cloud Service resources.

Switching from Dynamics On-Prem to Online
While there are no universal steps for transitioning from an on-prem to online version of Dynamics, there
are a few conceptual differences in the way InRule for Dynamics works in each that you should be aware
of. In on-prem installations, communication with the rule execution service is typically handled directly via
HTTP. In Dynamics Online, communication is handled via an Azure Relay resource that manages the
WCF Relay. Depending on the specifics of how your migration takes place, you may need to re-install the
Dynamics package entirely, or it may still be installed on the migrated instance, along with associated
config records. Either way you will need to follow all the steps in Performing the Installation: In Azure for
deploying to Azure, and ensuring that the required Relay information is updated in Dynamics. Once you
complete all these steps, you will need to update any existing InRule Configuration records to replace the
URI that was in the ‘Service Endpoint Id (or Uri)’ field with the appropriate value (d2e50ca1-ef4c-e611-
80e9-6c3be5a82b30).

Using the new Entity-based Configuration
From version 5.0.28 and on, step registrations can be configured from within Dynamics. This new system
uses Rules Configuration records and associates them to step registrations created in the Rules
Configuration UI. Before you can use this new configuration, you will need to delete any custom
registrations (registrations other than ‘InRule Custom Action Step’) under the OnlinePlugin:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 127 of
142

Once you’ve deleted these registrations, you can create new ones from Dynamics using the steps in
Appendix F: Rules Configuration and Settings

Default Rule App Label Change
As of v5.7.3, the default Rule App Label configured on the execution service has been changed from
“LIVE” to not being set with a value. If a default label is not configured on the execution service, it will now
default to using the most recent version of the rule app being run. This has the potential to create an
issue during upgrade scenarios where users are relying on the LIVE label to denote their production-
ready rule. If using the most recent version of the given rule app is not the desired outcome, the default
label on the execution service will need to be set back to LIVE (or whatever the appropriate production
label for your existing rule apps may be). This can be done in the ARM template prior to upgrade
deployment.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 128 of
142

Appendix M: Known Issues, Limitations and Troubleshooting

This portion of the document lists current known issues and limitations that may be encountered in usage
of the Integration Framework. Most should only be encountered in limited edge cases.

Configuration
As highlighted in Configure the InRule Solution in Dynamics, the ‘Test’ button on the configuration page
can be used to validate that everything is configured correctly for the end-to-end connectivity required to
execute rules. The ‘Test’ button validates three areas which are described in more detail below

Execution Service Connectivity
The first step in the test is validating connectivity to the Rule Execution Service via the Azure Relay.
Errors here could indicate a variety of issues, such as misconfigured relay key or address, or network
connectivity issues between Dynamics or the execution service and the relay. Double-check the relay
config values in both the configuration page in Dynamics and the app settings on the execution service
site.

An error here can also be the result of a critical error within the execution service. If a response is
returned from the execution service but it is an error, the validation message will be prefixed with ‘Error
returned from rule service’, and the exception message. Further exception details can usually be found in
the Application Event Log of the execution service server.

Dynamics Connectivity
Once the test request reaches the execution service, it will attempt to validate the connectivity from the
execution service back to Dynamics. Errors here are usually a result of issues in the connection string.
This can include an incorrect Dynamics instance URL, incorrect credentials, or a malformed connection
string. Even if the credentials are correct there can be issues with the service account used, such as the
account not having the correct permissions or licensing, or using username/password credentials for an
account that requires MFA. Failures here can also be due to network restrictions between the execution
service and the Dynamics API.

Catalog Connectivity
The final step is checking connectivity from the execution service to the rule catalog service. Errors here
are usually a result of either an incorrect catalog URL or catalog credentials, but errors in the catalog
service can also cause a failure here. A common issue, for example, is an invalid or expired license key
on the catalog service.

Execution Runtime

Execution Service 1-Minute Timeout
Because of Dynamics default configuration, a 1-Minute Timeout may occur when a request to the Azure
Relay takes longer than a minute to respond. This can occur because of latency between Dynamics and
the rule execution service, or anything else that causes the rule execution service to take more than 1
minute to respond.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 129 of
142

Plugin Execution 2-Minute Timeout
Dynamics plugin execution is configured to timeout when the plugin runs for more than two minutes. In
online implementations there is nothing that can be done about this behavior because the plugin cannot
be taken out of sandbox mode. Since On-Prem implementations must be run outside of sandbox mode,
this timeout period can be changed by updating the configuration.

Missing rulesets on Run Rules drop-down
If you have users who are missing rule sets on the Run Rules drop-down, verify that the user’s role is set
to “InRule Rule Executor”. Running rules from the dynamics UI requires access to permissions not
normally given to most users – the “InRule Rule Executor” role provides the minimum level of permissions
needed to execute rules. See Getting Users Ready for more information.

Roles, Privileges and Access

S2S User Settings
If the ‘InRule Integration’ user is being used with the associated ‘InRule Integration Administrator’ role it
will have read privileges for all entities in the system when first installed, but the entity permissions are not
updated after the initial creation. If a new entity type is created, it will not automatically be added to this
security role and will have to be added manually

Missing Entity Privilege Error
If, after attempting to run rules, you see an error like the one below, make sure that the ‘InRule
Integration’ user has been assigned the ‘InRule Integration Administrator’ role, and that the role has the
permissions needed to access any entities necessary.

User Principal Permission Error
If your rule updates entity records, you may see an error like the one below when running rules. This is
because by default any changes are saved using the current user’s account. If the rule runner does not
have access to any of the entities being changed, execution will fail with this error.

This error can be resolved in two ways. First, the user’s permissions in Dynamics can be updated so that
they have the required permissions. Second, the InRule Custom Action step registration can be updated
with the plugin registration tool to run under a different user context. By default, this is set to ‘Calling

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 130 of
142

User’, but if your rules need to update an entity that end users do not have access to, you can change it
to ‘System’, or choose a specific user account that has access.

Using irX for Dynamics with Multi Factor Authentication (MFA)
Advanced login options have been added in irX for Dynamics to allow users with MFA to authenticate. To
authenticate in this manner select Use Advanced Login in the environment picker. This will reveal a
Login to Dynamics 365 Environment button. Once selected, the advanced login form will be displayed.
Select Office 365, enter your credentials, and complete the login process.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 131 of
142

Usability

Updating Entity Status via Rules
Currently, irX supports the updating of an entity’s status through rules for “standard” entities that can only
swap states between “Active” and “Inactive,” as well as for the Case entity. Given technical limitations
around how Cases are set to the “Resolved” status through rules, doing so currently auto-defines the
Case Resolution field as “Resolved by rules.” This can be edited within Dynamics itself after the fact if you
wish to change it, but there is no way to set the Case Resolution to anything different via rules at this
time. Additionally, rules that update an entity from “Resolved” or “Inactive” back to any variety of “Active”
that also update another field on the entity are not supported at this time. To support this operation, you
will first need to reactivate the entity, then make any desired changes to any fields on that entity after the
fact, rather than doing both in a single rule.

Other entities with similar “Resolved” states such as Order are not supported at this time.

On-Prem Execution Mode
Running the plugin in an On-Prem Dynamics environment requires running outside of Sandbox mode.
Plugins in sandbox isolation mode run under partial trust, which prevents plugins from doing things like
accessing the file system and registry. This also prevents reflection from being used, which is necessary
for serializing Dynamics classes for communication over WCF. When using service endpoints to
communicate with Azure Relay, Dynamics provides helper classes that handle this serialization, but no
such classes are provided for On-Prem communication. It is worth noting that a side-effect of running
outside sandbox mode is Dynamics will not write to the plugin trace-log.

Considerations with Advanced Login:

1. Sign in as Current User (SSO) for Office 365 is not currently supported

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 132 of
142

2. If On-Premises connection is attempted with an Office 365 environment, you may see the
following error in the Error Log A Dataverse server name is required. To resolve, use Office
365 login.

Using Dynamics Connections
Support for Dynamics Connections is currently limited. You can bring in the Connection entity relationship
through irX as well as write rules against the Connection entity, however, the ability to write rules against
the Connected entity itself through the Connection relationship is not supported. For example, if you have
an Account Connected to a Contact, you can write rules against the Connection entity itself and do things
like change the Role, Role Type, or other fields on the Connection entity, however, you will not able to
write rules against the Contact entity. The Connection entity sits between the two Connected entities (in
this case Account and Contact) and contains all the Connection metadata describing the Connection.

Locate SAS Key and Namespace Address in Azure Portal
When setting up the connection to the rule execution service in Dynamics, you will need to provide the
SAS key and Service Bus Namespace Address for the Azure Relay that the execution service is listening
to. If you deploy the Azure resources using the provided ARM template and instructions, you should get
this value when the deployment completes.

If you need to locate the SAS key, you can retrieve it by navigating to the relay resource in the Azure
portal. The execution service uses the ‘RootManageSharedAccessKey’ by default, which you can find in
the ‘Shared access policies’ menu on the sidebar. Once you open the policy, you can copy out either the
primary or secondary key.

Finally, the Service Bus Namespace Address can be derived from the Name of the Azure Relay or the
‘Primary Connection String’. For example, an Azure Relay defined as:

• Name: 123dynamicsrelay
• Connection String (beginning with): Endpoint=sb://123dynamicsrelay.servicebus.windows.net...

The equivalent Service Bus Namespace Address is:

• Azure SB Namespace Address: https://123dynamicsrelay.servicebus.windows.net/ruleexecution

Performance

Plugin Trace Log
When troubleshooting performance issues, the plugin trace log provides detailed metrics to help analyze
the various components of rule execution performance. At a high level, the plugin trace logs provide run
times for the various execution steps. The ‘Performance’ section of the plugin trace form includes a field
for ‘Execution Duration’, which is the total process time for the plugin request. In addition, the InRule
plugin also provides a more detailed breakdown of steps in the trace text. These are broken into Plugin
Setup, Execution Service and Save.

Plugin setup time is usually short and includes config entity loading and parsing of input parameters.
Execution Service time will typically be longer, as this includes communication latency over Azure Relay,

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 133 of
142

loading of additional entity data, and execution of rules. Save time will not always show up in trace logs,
but if any entity changes come back from rule execution the time needed to save them will be reflected
here. The trace log will also include a message noting the number of entities returned from the execution
service for saving. This saving should not take much time for a handful of entities but can take several
seconds for large change sets.

For a further breakdown of the data loading and execution time from the rule execution service, the ‘Info’
level event logs for the App Service can be accessed through the Azure Portal. More information about
these logs can be found below.

Included below is a sample plugin trace log.

Entered InRule.Crm.ServicePlugins.OnlinePlugin.Execute()
Plugin context retrieved. Message is inrule_RulesEngineAction
Loading configuration entity with ID 42260319-bd49-e911-a973-000d3a1d5285
Configured with depth check of: 0
Plugin context depth: 1
Primary Entity name: none
Primary Entity ID: 00000000-0000-0000-0000-000000000000
Step ID: 070ad2c4-ae70-e711-811a-e0071b6a6141
Step Name: InRule Custom Action Step
Original Input parameters:
Parameter name: entityId, Value: f908cdfa-9b94-ea11-a811-000d3a8df742
Parameter name: ruleAppName, Value: AccountRuleApp
Parameter name: ruleSetName, Value: InvoiceReconciliationRules
Parameter name: entityTypeName, Value: account
Parameter name: persistChanges, Value: True
Parameter name: dirtyEntityImage, Value:
Output parameters:
Parameter name: executionResult, Value:
No entity image present in message. Locating and retrieving entity from CRM using ID f908cdfa-
9b94-ea11-a811-000d3a8df742 and type account
Posting the execution context to the service endpoint d2e50ca1-ef4c-e611-80e9-6c3be5a82b30
using RuleApp 'AccountRuleApp' and RuleSet 'InvoiceReconciliationRules'.
Plugin Setup Time: 16.6833ms

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 134 of
142

Plugin Execution Service Time: 704.7022ms
Received string response from rule execution service. Response length: 2734
Response json data:
{"EntityImage":null,"EntityChangesResponse":{"EntityChanges":[{"Id":"0a38ba18-9c94-ea11-a811-
000d3a8df742","ChangeType":0,"Entity":null,"EntityImageContainer":{"Attributes":[{"Name":"tota
ldaysnonbillable","Value":2.5625}],"EntityName":"account","Id":"0a38ba18-9c94-ea11-a811-
000d3a8df742"},"RelationshipContainer":null}]},"NotificationResponse":{"Notifications":[{"Type
":0,"Message":"Days Booked: 0"},{"Type":0,"Message":"Days Used: 0"},{"Type":0,"Message":"Days
Remaining: 0.0000"},{"Type":0,"Message":"Days Invoiced_Paid: 0"},{"Type":0,"Message":"Days
Invoiced_Open: 0"},{"Type":0,"Message":"Days Invoiced_Total: 0"},{"Type":0,"Message":"Amount
Invoiced Total: 0"},{"Type":0,"Message":"Training Booked: 1.5"},{"Type":0,"Message":"Training
Used: 1.5"},{"Type":0,"Message":"Total Days Booked: 1.5"},{"Type":0,"Message":"Total Days
Used: 1.5"},{"Type":0,"Message":"Total Days Comp: 1.5"},{"Type":0,"Message":"Total Days Non-
Billable: 2.5625"},{"Type":0,"Message":"Services Non-Billable:
0.0313"},{"Type":0,"Message":"Training Non-Billable:
0.5938"}]},"ValidationResponse":{"Validations":[]},"ContextResponse":{"PropertyBag":[]},"Error
Response":{"Errors":[]},"RuleExecutionLog":null}
SAVE: Saving 1 changes to CRM
Processing change -- Update on entity ID 0a38ba18-9c94-ea11-a811-000d3a8df742 -- type account
Synchronizing change images:
Completed sync changes image
Save Time: 74.1592ms
Output parameter "executionResult" populated with execution service response
Exiting InRule.Crm.ServicePlugins.OnlinePlugin.Execute()

Plugin Persistence Performance
When changes are made to entities as part of rule execution, these changes are bundled up and sent
from the execution service back to the plugin for saving. Performance testing in this area indicates you
can expect to be able to save around 10 changes a second, although other things can increase this time,
such as other plugins registered to the entity being updated, and initial plugin start-up times. This
performance constraint is specific to Dynamics overall (as compared to InRule) and has been verified with
direct testing using XRM with simple entities.

Execution Service Performance
Enabling Info level logging on the Execution Service can provide more detailed performance data. The
plugin trace log will include some summary data about the entire rule execution run, but the execution
service can log specifics about entity data loading and rule execution from the service. To enable the info
level logging set the “inrule:logging:level” app setting to “Info”. For all installations this can be done by
editing the web.config, but Azure-hosted services can also edit this setting via the Azure portal.

Setting this to “Info” will enable two sets of logs, the standard InRule SDK logs that appear for all InRule
products, and the data loading logs that measure entity loading specific to the Dynamics integration. You
can find all the details about the Event Logs on the InRule support site here. There are a variety of
different events, but the ‘ExecuteRuleSet’ entry will contain some of the most important measurements,
such as compile, execution and external call times.

However, these measurements only capture actual rule execution, and before rule execution happens the
entity tree is loaded from Dynamics. The data loading log captures this information. When executing rules
from Dynamics, only the root entity is sent from the plugin to the execution service, and the execution
service will then use the rule app metadata to determine which relationships and entities need to be
loaded. The execution service batches these requests for greater efficiency, but very large entity trees or

https://support.inrule.com/hc/en-us/articles/4410085857933-Event-Log-Details

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 135 of
142

network latency can still lead to long load times. The entity loading log breaks down the total loading time
into each ‘batch’ of loading requests made, and lists the total load time and all entities loaded in the
batch. This information can be used to identify where large numbers of entities are being loaded and how
long particular batches take to retrieve from Dynamics.

Taken together, these logs can be used with the plugin trace log to get an end-to-end picture of
performance, and help identify which steps consume the most time. An extract of a sample of the data
loading log is shown below.

Entity Loading:
Total Loading Time: 911.5114ms
Total Org Service Time: 701ms
Root Entity: inr_projectprofile

Related Entities: inr_projectprofile -> account lookup <inr_account_inr_projectprofile> (1),
inr_projectprofile -> inr_agreement lookup
<inr_inr_agreement_inr_projectprofile_PrimaryAgreement> (1), inr_projectprofile ->
inr_projectprofilegroup lookup <inr_inr_projectprofilegroup_inr_profile> (1),
inr_projectprofile -> inr_agreement collection <inr_inr_projectprofile_inr_agreement> (2),
inr_projectprofile -> annotation collection <inr_projectprofile_Annotations> (33),
inr_projectprofile -> inr_businessapplicationtype collection
<inr_inr_businessapplicationtype_inr_projectpr> (1), inr_projectprofile ->
inr_integrationdetail collection <inr_inr_integrationdetail_inr_projectprofile> (5),
inr_projectprofile -> inr_runtimeapplicationtype collection
<inr_inr_runtimeapplicationtype_inr_projectpro> (4), Time: 180.1637ms
Related Entities: account -> incident collection <incident_customer_accounts> (43),
inr_agreement -> serviceappointment collection <inr_agreement_ServiceAppointments> (69), Time:
128.366ms
Related Entities: incident -> subject lookup <subject_incidents> (8), serviceappointment ->
service lookup <service_service_appointments> (5), Time: 109.0635ms

In addition to always being logged on the execution service when Info logging is enabled, this log can
also be returned in the response and logged to the plugin trace log for easier access. This can be
enabled by following the steps in Displaying Additional Logs and Response Data in Trace Logs.

Regional Performance
To maximize performance by reducing network traversal time, ensure that your Dynamics 365 instance
and Azure resources (App Service, Azure Relay, etc.) are deployed to the same Azure Region.

To determine what region your Azure resources are deployed to, navigate to that resource’s overview
page in the Azure portal and reference the “Location” property at the top of the page:

Determining your Dynamics 365 region is unfortunately less straightforward. First, log in to your Dynamics
instance and select Settings:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 136 of
142

Under the Customization header, select “Customizations”

Select “Developer Resources”

Look for the endpoint address in the Discovery Service section:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 137 of
142

This endpoint address can be compared against the endpoints in this Microsoft document. They each
map to a major Azure region. While Dynamics does not provide a means of determining your sub-region
(such as US-East or US-West), this will allow you to at least know which major region your Dynamics
instance is located in.

Since you cannot change or configure your Dynamics region in any way, it is recommended instead that
you move your Azure resources to a sub-region that falls within the same major region that your
Dynamics instance is in.

Decreasing message size
Large message sizes when communicating over the Azure Relay to the execution service can result in
lower performance and potentially failed requests if the size is too large. When testing performance, it is
recommended to turn off ‘Entity Loading Log Enabled’, ‘Rule Execution Log Enabled’ and ‘Return Full
Entity Image’ in the ‘Rule Execution Service’ section of the InRule config entity, as these settings can
contribute significantly to the size of the message returned from the execution service.

Batch Processing
InRule rule execution is primarily oriented at the level of an individual transaction for a given entity
context. This is relatively straight-forward when rules are based on an entity event or on-demand process
- for example, Validate Account or Qualify Lead. In other scenarios, there may be a desire to execute
rules across multiple entities that are related to a logical parent at a point in time - for example a tranche
of Loans or Leads from a Tradeshow. In this case, InRule’s collection handling is well suited to load and
execute rules against multiple entities based on the relationship to the parent rule entity. The multiple
entity scenario works well up to a point. The primary consideration is that all of the entity data is
processed in a single rules execution request that can result in the loading and saving of hundreds to
thousands of entities.

If the entity count for a rule execution request is expected to be upwards of 1,000 to 10,000+ entities and
these entities represent individul transactions, it’s advisable to reassess, measure throughput and
potentially consider batch approaches. At this time, neither Dynamics nor InRule have a one-size-fits-all
solution for managing high-volume batch operations. However, in these scenarios, parallel rule execution
for a large number of transactions can be achieved by employing common batch solution techniques and
tools. The end goal is to establish a solution where a batch process will manage the iteration across the
primary entities (e.g. Leads for a Tradeshow) and issue execution requests to the InRule Rules Engine
Action for either individual Leads or smaller groups of Leads.

Enable Background Compilation
This setting controls whether the download, compilation, and caching of updates to rule applications from
the catalog is handled on a background task. When enabled, rule execution will not be blocked while
updating the rule app and will instead run immediately against the currently cached version. Self-hosted
tenants should ensure this value is set to true for their deployment to avoid unnecessary catalog
overhead. For additional information, please view the documentation available on the Configuration
Overview page.

Disabling State Refresh
Disabling the state refresh option could improve performance for applications with many RuleHelper calls.
State refresh is configured for both .Net Assembly Function Libraries, and User-Defined Functions.

https://docs.microsoft.com/en-us/previous-versions/dynamicscrm-2016/developers-guide/gg328127(v=crm.8)?redirectedfrom=MSDN
https://support.inrule.com/hc/en-us/articles/19630208136205-Configuration-Overview
https://support.inrule.com/hc/en-us/articles/19630208136205-Configuration-Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 138 of
142

.Net Function Assembly Libraries

To disable state refresh for .Net Assembly Function Libraries, begin by navigating to the Endpoints tab in
irAuthor. Once there, select the function library containing the function you wish to disable state refresh
for.

Select the function being updated from the list and then click the refresh icon on the right.

A Refresh Options pop-up should appear – locate the “Refresh all bound objects” checkbox and uncheck
it. Click OK.

State refresh should now be disabled for this function.

User-Defined Functions

To disable state refresh for User-Defined Functions, begin by navigating to the User-Defined Functions
tab of your app in irAuthor. Once there, select the function you wish to disable state refresh for and click
the “Modify state refresh options” link under the State Refresh Options section.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 139 of
142

A State Refresh Options pop-up should appear. Deactivate the “Enable full refresh of all bound objects”
checkbox and lick Ok.

State refresh should now be disabled for this function.

Request and Response Limitations

Request Message Size
If the request message size is too large the execution service will return an `Internal Server Error`. You
can enable WPF Tracing on the Rule Execution App Service to validate this is the issue.

Response Message Size
If the response message is too large the plugin will show this error message:

The maximum message size quota for incoming messages (xxxxxxx) has been exceeded. To
increase the quota, use the MaxReceivedMessageSize property on the appropriate binding
element. Please see Known Issues and Limitations in the InRule Deployment Guide

The response size limit cannot be changed, since it is not configurable in Dynamics 365, but there are a
few things you can do to reduce its size. In the relevant Rule Configuration settings, under the Rule

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 140 of
142

Execution Service section, you can disable the return of the entity image, rule execution log and entity
loading log.

Deployment and Setup

Solution File Invalid Error

If you are encountering the error above, it is likely because you are attempting to import the InRule
solution file using Dynamics’ included Import Solution tool. This is not the recommended approach for
upgrading the solution components. Because there are many operations involved in an upgrade beyond
the Dynamics solution – preserving step registrations and SAS keys, applying security role permission
sets, etc., all InRule solution installations and upgrades should be conducted using the approach
outlined in Section 3.3.3: InRule Solution for Dynamics 365.

Application Insights Location Error
Application Insights resources are not available in every region, the list of supported regions can be found
in Microsoft’s Product Availability. By default the ARM template will attempt to deploy the App Insights
resource in the resource group specified for the template deployment. If this resource group is in one of
the unsupported regions you will get the following error:

To fix this error we will have to choose a specific region for the Application Insights resource in the ARM
template parameters file.

1. Locate InRule.Dynamics.Service.parameters.json
The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined
in Section 3.3.2: Rule Execution App Service for Dynamics 365

2. Create an “appInsightsLocation” parameter

Open the file in your text editor of choice. First, create the “appInsightsLocation” parameter at
the bottom of the parameters file. Set the value equal to a region where Application Insights
resources are offered.

https://azure.microsoft.com/en-us/global-infrastructure/services/?products=all®ions=non-regional,us-central,us-east,us-east-2,us-north-central,us-south-central,us-west-central,us-west,us-west-2

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 141 of
142

3. Save InRule.Dynamics.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section
3.3.2: Rule Execution App Service for Dynamics 365 as normal; your rule execution app service
will now deploy to the App Service Plan you defined in the steps above

• Should you encounter the following error repeatedly being logged in your AppService’s
Application Log:
Unhandled Exception: System.ServiceModel.AddressAlreadyInUseException: This
endpoint requires IsDynamic = False
You need to delete the Azure Relay that your Webjob is attempting to connect to and redeploy it
using the ARM Template included in the InRule deployment package.

Package Deployment Timeout
When running the deployment script from InRule Solution for Dynamics 365, the Dynamics Package
Deployer tool may timeout when communicating with Dynamics. This will result in a ‘The request channel
timed out while waiting for a reply’ error. Depending on where in the process this error happens, the
Package Deployer tool may retry or may stop execution. Once it completes, be sure to validate the
service endpoint and custom action settings in Appendix F: Rules Configuration and Settings, as
incomplete deployments can reset these to default values.

AppSource Deployment Errors
Errors resulting from AppSource deployments can be difficult to debug, as the UI often provides very little
information. The first thing to check is if there is any info in ‘Solutions History’, which can be found in
advanced settings under the ‘Customization’ section. This page lists each solution install attempts, the
result, and any errors from deployment. Issues at this step can sometimes arise from dependency issues
or conflicts with other components installed in the instance. If the deployment fails before the solution
install is even attempted, there will not be any attempts listed, and the only error will be the generic one
displayed on the app management page. If this happens, attempt to install the app at a later time, and
ensure that all of the appropriate licenses are provisioned. If this still does not resolve the issue,
contacting Microsoft support may be required.

Miscellaneous Troubleshooting Items

• Relay Provider Error - When deploying the Azure WCF Relay (aka Azure Relay), you will need
to ensure the Azure subscription you are deploying the Relay into has the Relay provider
enabled. This can sometimes happen with older subscriptions that have not used relays before.
For more information about this issue, refer to the link here

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-register-provider-errors

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 142 of
142

• Plugin Isolation for On-Prem - When deploying plugins without isolation in an on-prem
environment, Dynamics requires that the user registering the plugin must be added as a
Deployment Administrator from Deployment Manager. If the registering user lacks the proper
permissions, when deploying the package Dynamics will return an error stating “Assembly must
be registered in isolation.”

	Table of Contents
	1 Introducing InRule for Microsoft Dynamics 365
	Before You Begin

	2 Understanding your options
	2.1 Microsoft Dynamics 365 (Online) – InRule SaaS
	2.2 Microsoft Dynamics 365 (Online) – Self-hosted in Microsoft Azure
	2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS
	2.4 Other Integration Scenarios

	3 Performing the Installation: In Azure
	3.1 Solution Architecture Overview
	Rule Execution App Service for Dynamics 365
	InRule Solution for Dynamics 365
	Catalog App Service and Azure SQL Database
	Azure Relay

	3.2 Gathering prerequisites
	.NET Framework
	Optional Resource Files
	Rule Authoring Environment
	Administrative Accounts
	InRule Azure License File
	Deciding resource names

	3.3 Deploying and Configuring Components
	3.3.1 Catalog App Service
	Installing the Catalog App Service
	Uploading License File
	Testing the Catalog App Service by uploading the sample Rule App
	1: Navigate to the file in your file explorer and double click on it, this will open the file with irAuthor.
	3: Choose Add Catalog, enter connection information for the Catalog Server that you deployed, and then select Use This.
	4: Save with the name DynamicsRules

	3.3.2 Rule Execution App Service for Dynamics 365
	1: Registering an Azure Active Directory Application (Optional)
	2: Locate azuredeploy.parameters.json
	3: Update parameters
	4: Option 1: Deploy ARM Template with Azure CLI
	3.1 Run Command Prompt or PowerShell
	3.2 Navigate to the RuleExecutionAzureService folder
	3.3 Enter “az login” to login into Azure
	3.4 Enter your Azure admin credentials to login when prompted in the new browser window opened
	3.5 Select the appropriate subscription
	3.6 Create Resource group
	3.7 Execute the following command to deploy the ARM template

	5: Option 2: Deploy ARM Template with PowerShell
	1.
	2.
	3.
	4.
	4.1 Run PowerShell
	4.2 Navigate to the RuleExecutionAzureService folder
	4.3 Enter “Connect-AzAccount” to login into Azure
	4.4 Enter your Azure admin credentials to login when prompted in the new browser window opened
	4.5 Select the appropriate subscription
	4.6 Create Resource Group
	4.7 Execute the following command to deploy the ARM template

	6: Verify Setup
	7: Upload License File

	3.3.3 InRule Solution for Dynamics 365
	1: Execute Deploy-CrmPackage.ps1
	2: Provide Dynamics 365 Service Credentials
	3: Configure S2S App User
	4: Configure the InRule Solution in Dynamics
	5: Verify a successful deployment!
	6: Getting Users Ready

	4 Performing the Installation: On-Premises
	4.1 An overview of the Components needed
	Catalog Web Service and Database
	Rule Execution Web Service for Dynamics 365 On-Premises
	InRule Solution for Dynamics 365 On-Premises

	4.2 Gathering prerequisites
	Required Files
	Rule Authoring Environment
	Administrative Accounts
	InRule License Keys

	4.3 Deploying and Configuring Components
	4.3.1 Setting Up an Application Pool in IIS
	1: Open IIS Manager
	2: Click on Application Pools on the left-hand nav pane
	3: Click “Add Application Pool” under “Actions” in the right-hand pane
	4: Define a name for the Application Pool and Create
	5: Click on the new App Pool and Select “Advanced Settings” on the right-hand pane
	6: Under the “Process Model” header, select the small “…” button next to the “Identity” property

	4.3.2 Setting Up the IIS Site for the Rule Execution Web Service
	1: Open IIS Manager
	2: Click on sites on the left-hand nav pane
	3: Click “Add Website” under “Actions” in the right-hand pane
	4: Define website information
	5: Verify your website successfully created

	4.3.3 Deploy the Rule Execution Web Service
	1: Open your “RuleExecutionOnPremService” folder:
	2: Open the InRule.Crm.WebService.SetParameters.xml file in Notepad or a similar text editor
	4: Save your changes
	5: Launch PowerShell as an administrator
	6: Navigate to the “RuleExecutionOnPremService” folder
	7: Run the “DeployScript.ps1” file

	4.3.4 InRule Solution for Dynamics On-Prem Deployment
	1: Launch PowerShell as an administrator:
	2: Navigate to the ‘\Dynamics Deployment’ directory:
	3: Execute Deploy-CrmPackage.ps1
	5: Provide Dynamics On-Prem Service Credentials
	6: Configure the InRule Solution in Dynamics
	7: Verify a successful deployment!
	8: Getting Users Ready

	Appendix A: Additional Resources
	InRule’s Support Website
	InRule’s Support Team
	InRule’s ROAD Team

	Appendix B: Anatomy of a Request for Execution of Rules Diagram
	Appendix C: General Authoring and Integration Concepts
	Runtime Mapping across Nested Relationships
	Controlling irVerify Behavior with Load, Save and Inactive Record Settings
	Polymorphic Lookups

	Appendix D: Accessing Dynamics 365 Directly from Rule Helper
	When to use the Query from Rules Approach
	Working with Disconnected Fields when Loading and Saving Data
	Integrating the Rule Helper Component
	Filtering Queries using the Where Clause Builder
	Ordering Query Results with the OrderByClauseBuilder
	Methods Available in the Rule Helper
	Additional Flags Available to Control Loading and Caching Behaviors in the Rule Helper

	Appendix E: Methods for Executing Rules from Dynamics 365 and Power Platform
	User Control
	Display in the User Interface
	Execution Against Dirty Data
	Responding to API Events
	4.4 Dataverse Events
	Validation and Cancellation
	Plugin Registration Tool (Advanced Scenarios Only)

	4.5 Rules Engine Action
	4.6 Run Rules Button
	Using the Rule Set Dropdown
	Running Rules with parameters
	Using the Run Rules button from Entity View

	4.7 Workflow Activity
	4.8 Form Events
	4.9 JavaScript
	Overriding Rule Configuration behavior with user Options and custom JavaScript

	4.10 Power Platform
	Power Automate
	Canvas Apps

	Appendix F: Rules Configuration and Settings
	Create or Update Rule Configuration Records
	Configure Rules Button Settings
	Using Input Parameters for Rule Sets or Decisions
	Associating a Rule Configuration record to an Entity
	An Explanation of the Rules Button Options
	Displaying Additional Logs and Response Data in Trace Logs
	Disabling the Run Rules Button
	Changing the Max Plugin Depth
	Disabling Persist Changes
	Configuring the AppDomain Cache
	Calling ApplyRules (Auto Fire Mode Rule Sets)

	Appendix G: Endpoint Override Configuration
	Rest Service Override

	Appendix H: Azure App Service Plan & Application Insights Configuration
	Azure App Service Plan Overview
	Configuring the ARM Template to Use an Existing Azure App Service Plan
	1: Locate InRule.Dynamics.Service.parameters.json
	2: Populate “appServicePlanName” parameter
	3: Update “createOrUpdateAppServicePlan” parameter
	4: [Optional] Create “servicePlanResourceGroupName” parameter
	5: Save InRule.Dynamics.Service.parameters.json and continue deployment

	Azure Application Insights Overview

	Appendix I: Dataverse Connectivity and Authorization
	Plugin Authorization Context
	Roles and Permissions for the Plugin Context

	Execution Service Authorization Context
	Roles and Permissions for the Execution Service Context
	Consenting to the InRule SaaS Entra ID Application

	Configuring the Dataverse Connection in SaaS
	Granting Consent
	Creating an Application User
	Dataverse Runtime Settings in the InRule SaaS Portal
	Providing Connection Information
	1: Using an S2S Connection
	2: Using an OAuth Connection

	Configuring the Dataverse Connection for Self-hosted Installs
	Creating the Entra ID Application

	Appendix J: Dynamics 365 Tracing and InRule Event Logging
	Dynamics 365 Plug-In Trace Logging
	Enable Plug-In Trace Log
	Viewing Plug-In Trace Log

	Rule Execution Service Event Log
	Configuring Event Logging Levels
	Viewing Application Event Logs

	Appendix K: License Management
	Uploading a License File
	Azure App Service Editor
	FTP

	Activating Your License Utility
	1: Download the license activation utility:
	2: Run the Activation Utility: Run the activation utility as an Administrator to install Event Log Source.
	3: Find your license keys:
	4: Enter your name, organization name and license keys into the Activation Utility:
	5: Verify your license keys have activated:

	Appendix L: New Releases and Upgrading Versions
	Release History
	Version Compatibility Considerations
	SaaS Upgrades
	WS-Trust/Office365 Auth Deprecation
	S2S Legacy Settings Removal
	Execution Service App Settings
	Solution Customizations
	Upgrading from Cloud Service-based versions
	Switching from Dynamics On-Prem to Online
	Using the new Entity-based Configuration
	Default Rule App Label Change

	Appendix M: Known Issues, Limitations and Troubleshooting
	Configuration
	Execution Service Connectivity
	Dynamics Connectivity
	Catalog Connectivity

	Execution Runtime
	Execution Service 1-Minute Timeout
	Plugin Execution 2-Minute Timeout
	Missing rulesets on Run Rules drop-down

	Roles, Privileges and Access
	S2S User Settings
	Missing Entity Privilege Error
	User Principal Permission Error
	Using irX for Dynamics with Multi Factor Authentication (MFA)

	Usability
	Updating Entity Status via Rules
	On-Prem Execution Mode
	Using Dynamics Connections
	Locate SAS Key and Namespace Address in Azure Portal

	Performance
	Plugin Trace Log
	Plugin Persistence Performance
	Execution Service Performance
	Regional Performance
	Decreasing message size
	Batch Processing
	Enable Background Compilation
	Disabling State Refresh
	.Net Function Assembly Libraries
	User-Defined Functions

	Request and Response Limitations
	Request Message Size
	Response Message Size

	Deployment and Setup
	Solution File Invalid Error
	Application Insights Location Error
	Package Deployment Timeout
	AppSource Deployment Errors

	Miscellaneous Troubleshooting Items

